زندگینامه مندلیف و جدول مندلیف

زندگینامه مندلیف و جدول مندلیف

تهیه کننده : اثیر کربلایی
منبع : راسخون



مقدمه
کمتر کسی است که با جدول تناوبی مندلیف در دروس شیمی آشنایی نداشته باشد و حداقل نام این جدول را شنیده و دیده است. این جدول به شیمیدانان تا کنون کمک های شایایانی کرده است ، زیرا همه عناصر موجود و کشف شده ، وزن و نوع خاصشان توسط دانشمند مشهور روسی ، دیمیتری ایوانویچ مندلیف طبقه بندی شده است. این دانشمند برجسته توانست با تبحر کافی در شیمی به خواص عناصر مختلف دست یابد و آن ها را به همگان معرفی کند. در این مقاله به زندگی پر فراز و نشیب این شیمیدان اشاره می کنیم تا اطلاع کامل در زمینه نحوه زندگی و تلاش های مستمر او به دست آورید.

تولد مندلیف
دیمیتری اوانوویچ مندلیف (Mandaliev) ، زیر و رو کننده علم شیمی و فرزند یکی از مدیران مدرسه محلی ، در 7 فوریه 1834 در شهر توبولسک واقع در روسیه متولد شد.

کودکی یک یتیم
دیمیتری ایوانویچ در هفت فوریه سال 1834 در شهر تویولسک سیبیری در یک خانواده متوسط و پرجمعیت چشم به جهان گشود. او چهاردهمین فرزند خانواده مندلیف به شمار می رود. پدرش ایوان مدیر یکی از مدارس محلی بود و مادرش ماریا در کارگاه شیشه گری که از پدرش به ارث برده بود کار می کرد تا بتوند کمک خرج شوهرش باشد. پدربزرگ ایوانویچ نیر مسئول اولین روزنامه محلی در سیبری بود. دیمیتری ایوانویچ زندگی خوب و آرامی داشت تا این که پدرش را بر اثر یک بیماری قلبی از دست داد و یتیم شد. از آن به بعد اندوه و ناامیدی فضای خانه را پر کرده و ایوانویچ که پنج سال بیشتر نداشت در غم از دست دادن پدر افسرده شد. مادر بیشتر کار کرد تا هزینه خانواده پر جمعیتش را درآورد . او شبانه روز در کارگاه شیشه گری مشغول ساخت انواع ظروف بلوری بود تا بچه هایش در آسایش زندگی کنند و به تحصیل بپردازند. دیمیتری ایوانویچ به مدرسه توپولسک رفت و استعداد درخشان خود را در زمینه ریاضی و فیزیک به معلمان خود نشان داد. عصر ها بعد از اتمام مدرسه به کارگاه نزد مادرش می رفت و او را در شیشه گری کمک می کرد. دایی اش بسارگین راهنما و دوست خوبی برای دیمیتری بود. وقتی دیمیتری پا به 14 سالگی گذاشت مادرش به او قول داد که وی را به مدرسه سن پترزبورگ برای ادمه تصیل بفرستد اما بخت با آنان یار نبود و کارگاه شیشه گری آتش گرفت و همه سرمایه شان از دست رفت.
دیمیتری برای یافتن شغل پز درآمد به سن پترزبورگ رفت و در آن جا به تدریس در یک مدرسه پرداخت. او در سال 1850 توانست بورس تحصیلی بگیرد و و به تحصیل در رشته ریاضی ، فیزیک و شیمی بپردازد. او خانواده خود را هم به سن پترزبورگ آورد اما متاسفانه مادر و خواهرش به بیماری سل دچار شدند و او را به با یک دنیا غم و اندوه تنها گذاشتند.

ورود به دنیای شیمی
وی در سال 1869 دکتر علوم و استاد شیمی دانشگاه شد و در همین سال ازدواج کرد. در این هنگام ، فقط 63 عنصر از نظر شیمیدانها شناخته شده بود.

درخشش در دانشگاه
علی رغم مشکلات و فشار روحی بر دیمیتری ، او از درس غافل نشد و با نمرات عالی دروس دانشگاهی را می گذراند.
دیمیتری بر اثر فقر و و اندوه بیمار شد تا حدی که پزشکان تصور کردند او نیز به سل میتلا شده است. لذا به او توصیه کردند که به یک جای خوش آب و هوا برود و کمی استراحت کند.دیمیتری به جزایر کریمه سفر کرد و کمکم سلامت خود را به دست آورد و بعد به سنت پترزبورگ بازگشت. او زیر نظر آ. وسکرسنکا شیمیدان بزرگ روسی به آموختن علم شیمی پرداخت و در سال 1855 با دریافت یک مدال طلا فارغ التحصیل و به تدریس در دبیرستان مشغول شد و کتاب شیمی آلی را منتشر کرد که اولین کتاب درسی شیمی آلی روسی بود. او به فرانسه و آلمان دعوت شد تا در کنفرانس ها شرکت کند. سپس با ارائه کتابی تحت عنوان اتحاد آب و الکل در زمینه شیمی صنعتی درجه دکتری گرفت و استاد شیمی در دانشگاه سن پترزبورگ شد. او چند کتاب با عنوان شیمی معدنی و اصول شیمی منتشر کرد که مرد توجه اساتید شیمی قرار گرفت.
در سال 1864 با دختری به نام فزووز لشوا در دانشگاه آشنا شد و ازدواج کرد. ثمره این ازدواج دو فرزند بود یک پسر به نام ولودیا و یک دختر به نام الگا. اما این ازدواج فرجام خوبی نداشت و به طلاق و جدایی منجر شد.

جدول تناوبی ، پیش از مندلیف
پیش از مندلیف ، شیمیدان انگلیسی به نام "ژ.آ.نیولندز" ، اثر خویش را درباره تناوب خواص بعضی عنصرها برحسب وزن اتمی متزایدشان منتشر کرد. اثر وی از طرف انجمن شیمی رد شد و یکی از همکارانش ، ریشخندانه به وی گفت که شاید با تنظیم عنصرها به ترتیب الفبایی بازهم بتواند کشف مفیدتری بکند.
دز زمان مندلیف ، تنها 60 عنصر شناخته شده بود. بعد از مرگ وی ، دهها شیمیدان با پیروی از راه نبوغ‌آمیز او ، عنصرهای تازه‌ای کشف کردند و این عنصرهای تازه و آن ترکیبهای نوین به مفهوم رده‌بندی وی راه یافتند.
رده‌بندی دوره‌ای مزبور در بررسی طیف‌ها ، تایید شد. با تنظیم طیف عنصرها برحسب رده‌بندی ،دانشمند جوان انگلیسی ، به نام "هانری موزلی" در سال 1913 قانون دیگری کشف کرد که در دستگاه مندلیف جاری است. کاشف مزبور ، مفهوم شماره ترتیب عنصرهای این رده‌بندی را روشن کرد. او ثابت کرد که این بار هسته مرکزی است که بطور قطع ، برابر شماره ترتیب عنصر است و در اتم ، بسیار اهمیت دارد و به همان اندازه که الکترونها بوسیله این بارها به هسته مرکزی وابسته‌اند، در مدارهای خود به دور آن هسته می‌گردند.
خلق جدول مندلیف

قانون تناوبی
مندلیف در این فکر بود که خواص فیزیکی و شیمیایی عناصر ، تابعی از جرم اتمی آنهاست. بدون قانون تناوبی نه پیش بینی خواص عناصر ناشناخته میسر بود و نه به فقدان یا غیبت برخی از عناصر می‌شد پی برد. کشف عناصر ، منوط به مشاهده و بررسی بود. بنابراین تنها یاری بخت ، مداومت و یا پیش داوری ، منجر به کشف عناصر جدید می‌شد.
قانون تناوبی ، راه جدیدی در این زمینه گشود. منظور مندلیف از این جمله‌ها آن بود که در سیر تاریخی شیمیایی ، زمان حدس زدن وجود عناصر و پیشگویی خواص مهمشان فرا رسیده است. جدول تناوبی ، پایه‌ ای برای این کار شد. حتی ساخت این جدول نشان می‌داد که در چه جاهایی مکان خالی باقی می‌ماند که باید بعدا" اشغال شود.

چینش عناصر در جدول تناوبی
با آگاهی از خواص عناصر موجود در جوار این مکانهای خالی ، می‌شد خواص مهم عناصر ناشناس را تخمین زد و چند مشخصه مقداری آنها (جرمهای اتمی، چگالی ، نقطه ذوب ، و نقطه جوش و مانند آنها) را به کمک نتیجه گیری‌های منطقی و چند محاسبه ریاضی ساده ، تعیین کرد. این مطالب نیاز به تبحر کافی در شیمی داشت. مندلیف از این تبحر برخوردار بود که با ترکیب آن ، با تلاش علمی و اعتقاد به قانون تناوبی توانست پیشگوهای درخشانی درباره وجود و خواص چندین عنصر جدید را ارائه دهد. بنابراین مطابق با این فکر ، جدولی درست کرد و 63 عنصر شناخته شده را به ترتیب جرم اتمیشان در جدول قرار داد.
تعداد عناصر در سطرهای جدول یکی نبود، مثلاٌ سطر پنجم 32 عنصر داشت، در حالی‌که سطر ششم فقط شامل 6 عنصر بود. ولی عناصری که خواص آنها شبیه هم بود، در این جدول نزدیک هم قرار داشتند و بدین علت مقداری از خانه‌های خالی ، متعلق به عناصری است که تا آن زمان شاخته نشده بود. در سال 1869 جدول عجیبی را تنظیم کرد که عناصر بر اساس خواص مواد در خانه های عمودی و افقی قرار گرفته شده بود . به یان ترتیب این جدول از سبک ترین عنصر ینی هیدروژن آغاز و به سنگین ترین آنها یعنی اورانیوم خاتمه پیدا می کرد . دیمتری عاشق خواهر دوستش پوپوف شد لذا با او ازدواج کرد که ثمره یان ازدواج چهار فرزند بود . دیمتری برای خلق عجیب و غریبش مورد تمسخر اعضای انجمن و شیمیدانان روسیه قرار گرفت ، ولی فقط لوتادمیر دانشمند بزرگ شیمی بود که او را تشویق به ادامه کارش می کرد . در سال های بعد اسکاندیوم و ژورمانیم را کشف کردند که مندلیف این عناصر را هم در جدولش قرار داد .

میزان استقبال از جدول مندلیف در آن زمان
جدول مندلیف که پیش بینی وجود 92 عنصر را می‌نمود، جز "لوتر مایز" که یک سال بعد از مندلیف ، جدولی مشابه با جدول مندلیف انتشار داده بود، طرفداری نداشت.

پیش‌بینی‌های مندلیف در جهان علم
پیش‌بینی‌های عجیب مندلیف ، زمان درازی به صورت مثلهای موجود در همه کتابهای شیمی در آمده بود و کمتر کتاب شیمی وجود دارد که در آن ، از اکاآلومینیوم و اکابور و اکاسیلیسیم یاد نشده باشد که بعدها پس از کشف به نامهای گالیوم، سکاندیوم و ژرمانیوم نامیده شدند. در میان سه عنصری که مندلیف پیش بینی کرده بود اکاسیلیسیوم بعد از سایرین کشف شد(1887) و کشف آن بیش از کشف دو عنصر دیگر ، مرهون یاری بخت و تصادف مساعد بود.

تایید پیش‌گویی‌های مندلیف
در واقع ، کشف گالیوم توسط "بوابودران" (1875) مستقیماٌ توسط روشهای طیف سنجی‌اش بود و جداکردن سکاندیوم توسط "نیلسون" و "کلو" (1879) مربوط به بررسی دقیق خاکهای نادر بود که در آن زمان اوج گرفته بود. اندک اندک همه پیش‌گویی‌های مندلیف تحقق یافتند. آخرین تائید در مورد وزن مخصوص سکاندیوم فلزی بود.
در سال 1937 ، "فیشر" شیمیدان آلمانی ، موق به تهیه سکاندیوم با درجه خلوص 98% شد. وزن مخصوص آن ، 3 گرم بر سانتی‌متر مکعب بود. این دقیقاٌ همان رقمی است که مندلیف پیش‌بینی کرده بود. در پاییز سال 1879 "انگلس" کتاب جامعی بدست آورد که نویسندگانش "روسکو" و "شورلمر" بودند. در آن کتاب ، برای نخستین بار به پیشگویی آلومینیوم توسط مندلیف و کشفش تحت تاثیر نام گالیوم اشاره شده بود.
در مقاله ای که بعدها انگلس در کتابی هم نقل کرده است، اشاره به مطلب آن کتاب شیمی شده است و نتیجه گرفته است که: « مندلیف با به کار بردن ناخودآگاه قانون تبدیل کمیت به کیفیت هگل ، واقیعت علمی را تحقق بخشید که از نظر تهور ، فقط قابل قیاس با کار "لوریه" در محاسبه مدار سیاره ناشناخته نپتون بوده است. »

شهرت جهانی مندلیف
علاوه بر آنچه گفته شد، با اکتشاف آرگون در سال 1894 و هلیوم و اینکه جدول مندلیف وجود نئون و کریپتون و گزنون را پیش‌بینی نمود، جدول مندلیف شهرت عجیب و فوق‌العاده ای کسب نمود. در آن سالها بود که تمامی آکادمی‌های کشورهای جهان (غیر از مملکت خویش) او را به عضویت دعوت نمودند.

مهاجرت
دیمتری مردی آزادی خواه و خستگی ناپذیر و علاقه مند به مسائل اجتماعی بود لذا مورد انتقاد از سوی دولت تزار قرار گرفت . وقتی حکومت تزار او را سد راه خود دیدند وی را به کشورهای خارجی فرستادند تا از روسیه دور باشد . مندلیف به پاریس رفت و در آزمایشگاه ورتس شیمیدان فرانسوی مشغول به کار شد . وپمدتی را هم به همکاری با بونزن شیمیدان و فیزیکدان آلمانی پرداخت . سپس به آمریکا سفر کرد و از چاه نفتی پنسسیلوانیا بازدید به عمل آورد . مندلیف هنگام کسوف سال 1906 به فرانسه رفت و برای تحقیق فضایی با بالون به هوا پرواز کرد
او در همان سال در لیست نامزدهای جایزه نوبل قرار گرفت ولی به دلیل این که « مواسان » شیمیدان فرانسوی یک رای بیش از او آورد این جایزه به مندلیف نرسید . مندلیف یکی از چهره ها و شخصیت های دوست داشتنی نزد مردم روسیه بود . لذا به هنگام جنگ روس و ژاپن آنان از مندلیف خواستند که به کشورش باز گردد و قوت قلب مردم کشورش باشد .
از این رو سالهای آخر زندگی مندلیف در غم و نگرانی جنگ و خونریزی گذشت .

جدول مندلیف
مندلیف و لوتار میردر موردخواص عنصرهاو ارتباط انها بررسی های دقیق تری انجام دادندودر سال 1869م به این نتیجه رسیدند که خواص عنصرها تابعی تناوبی از جرم انهاست.به این معنا که اگر عنصرها را به ترتیب افزایش جرم اتمی مرتب شوند نوعی تناوب در انها اشکار میگرددوپس ازتعداد معینی از عنصرها عنصرهایی با خواص مشابه خواص پیشین تکرار می شوند .
مندلیف در سال 1869 بر پایه ی قانون تناوب جدولی از 63عنصر شناخته شده ی زمان خود منتشر کرد .در فاصله ی بین سالهای 1869 تا 1871م مندلیف هم مانند لوتار میر با بررسی خواص عنصرها و ترکیب های انها متوجه شد که تغییرهای خواص شیمیایی عنصرها مانند خواص فیزیکی انها نسبت به جرم اتمی روند تناوبی دارد.از این رو جدول جدیدی در 8 ستون و12سطر تنظیم کرد.او با توجه به نارسایی های جدول نیو لندز ولوتار میر و حتی جدول قبلی خود جدولی تقریبابدون نقص ارایه دادکه فراگیر وماندنی شد.

شاهکارهای مندلیف در ساخت شهرک عناصر :
روابط همسایگی:دانشمندان پیش از مندلیف در طبقه بندی عناصر هر یک را جداگانه و بدون وابستگی به سایر عناصر در نظر می گرفتند.اما مندلیف خاصیتی را کشف کرد که روابط بین عنصرها را به درستی نشان میدادو ان را پایه تنظیم عناصر قرار داد.
وسواس وی: او برخی از عناصر را دوباره بررسی کرد تا هر نوع ایرادی را که به نادرست بودن جرم اتمی از بین ببرد.در برخی موارد به حکم ضرورت اصل تشابه خواص در گروهها را بر قاعده افزایش جرم اتمی مقدم شمرد.
واحدهای خالی: در برخی موارد در جدول جای خالی منظور کردیعنی هر جا که بر حسب افزایش جرم اتمی عناصر باید در زیر عنصر دیگری جای می گرفت که در خواص به ان شباهتی نداشت ان مکان را خالی می گذاشتو ان عنصر را در جایی که تشابه خواص رعایت میشد جای داد.این خود به پیش بینی تعدادی ا زعنصرهای ناشناخته منتهی شد..
استقبال از ساکنان بعدی:مندلیف با توجه به موقعیت عنصرهای کشف نشده و با بهره گیری از طبقه بندی دوبرایزتوانستخواص انها را پیش بینی کند.برای نمونه مندلیف در جدولی که در سال 1869 تنظیم کرده بودمس و نقره وطلا را مانند فلزی قلیایی در ستون نخست جا داده بود اما کمی بعد عناصر این ستون را به دو گروه اصلی و فرعی تقسیم کرد.سپس دوره های نخست و دوم و سوم هر یک شامل یک سطر و هر یک از دوره های چهارم به بعد شامل دو سطر شده وبه ترتیب از دوره های چهارم به بعد دو خانه اول وشش خانه اخر از سطر دوم مربوط به عناصر اصلی ان دوره و هشت خانه باقی مانده ی سطر اول و دو خانه اول سطر دوم مربوط به عناصر فرعی بود
ساخت واحد مسکونی هشتم:مندلیف با توجه به این که عناصراهن وکبالت ونیکل وروتینیم ورودیم وپالادیم واسمیم وایریدیم وپلاتینخواص نسبتا با یکدیگر دارند این عناصر را در سه ردیف سه تایی و در ستون جداگانه ای جای دادو به جدول پیشین خود گروه هشتم ا هم افزود. در ان زمان گازهای نجیب شناخته نشده بوداز این رودر متن جدول اصلی مندلیف جایی برای این عناصر پیش بینی نشد. پس از ان رامسی و رایله در سال 1894 گاز ارگون را کشف کردند و تا سا ل 1908 م گازهای نجیب دیگرکشف شد و ظرفیت شیمیایی انها 0 در نظر گرفته شدو به گازهای بی اثر شهرت یافتند.
اسانسور مندلیفبه سوی اسمان شیمی :جدول مندلیف در تنظیم و پایدار کردن جرم اتمی بسیاری از موارد مندلیفنادرست بودن جرم اتمی برخی از عناصر را ثابت و برخی دیگر را درست کرد .جدول تناوبی نه تنها به کشف عنصرهای ناشناخته کمک کرد بلکه در گسترش و کامل کردن نظریه ی اتمی نقش بزرگی بر عهده داشت و سبب اسان شدن بررسی عناصر و ترکیب های انها شد.

مجتمع نیمه تمام:
جدول تناوبی با نارسایی هایی همراه بود که عبارتند از :
1-جای هیدروژن در جدول بطور دقیق مشخص نبود .گاهی ان را بالا ی گروه فلزهای قلیایی و گاهی بالای گروه های گروه هالوژن ها جا میداد.
2-در نیکل و کبالت که جرم اتمی نزدیک به هم دارند خواص شیمیایی متفاوت است و با پایه قانون تناوبی ناسازگاری دارد.
3-کبالت را پیش از نیکل و همچنین تلور را پیش از ید جای داد که با ترتیب صعودی جرم اتمی هم خوانی نداشت .با پیش رفت پژوهش ها و با کشف پرتوایکس و عنصرهاو بررسی دقیق طیف انها عدد اتمی کشف و اشکار شد و عناصر بر حسب افزایش عدد اتمی مرتب و نار سایی های جزیی موجود در جدول مندلیف از بین رفت .زیرا تغییرات خواص عناصر نسبت به عدد اتمی از نظم بیشتری برخوردارست تا جرم اتمی انها .
4-سال پس از نشر جدول مندلیف بوابو در ات به روش طیف نگاری اکا الومینیوم را کشف کرد و گالیم نامید و 4 سال بعد نیلسون اکا بور را کشف کرد و اسکاندیم نامید و هفت سال بعد ونیکلر هم اکا سیلسیم را از راه تجربه طیفی کشف کرد و ان را ژرمانیم نامید.

تغییرات خواص عناصر در دوره ها و گروههای جدول:
1-تغییرات شعاع اتمی :در هر گروه با افزایش عدد اتمی شعاع اتمی افزایش می یابد ودر هر دوره با افزایش عدد اتمی شعاع اتمی به تدریج کوچکتر می گردد.
2-تغییرات شعاع یونی :شعاع یون کاتیون هر فلز از شعاع اتمی ان کوچکتر و شعاع هر نا فلز از شعاع اتمی ان بزرگتر است.به طور کلی تغییرهای شعاع یونی همان روند تغییرات شعاع اتمی است.
3-تغییرات انرژی یونش: در هر دوره با افزایش عدد اتمی انرژی یونش افزایش
می یابد و در هر گروه با افزایش لایه های الکترونی انرژی یونش کاهش می یابد.
4-تغییرات الکترون خواهی :در هر دوره با افزایش عدد اتمی انرژی الکترونخواهی افزایش می یابدودر هر گروه با افزایش عدد اتمی اصولا انرژی الکترون خواهی از بالا به پایین کم می شود .
5-تغییرات الکترونگاتیوی:در هر دوره به علت افزایش نسبتا زیا د شعاع اتمی الکترونگاتیوی عناصر کم میشود و در هر دوره به علت کاهش شعاع اتمی الکترونگاتیوی عناصر افزایش می یابد .
6-تغییرتعدادالکترونهای لایه ظرفیتوعدد اکسایش:در هر دوره از عنصری به عنصر دیگریک واحد به تعداد الکترون ها ی ظرفیت افزوده میشود و تعداد این الکترونها و عدد اکسایش در عنصرهای هر گروه با هم برابرند.
7-تغییرات پتانسیل الکترودی :در ازای هردوره با افزایش عدد اتمی توانایی کاهندگی عنصرها کاهش می یابد و توانایی اکسیدکنندگی انها افزایش می یابد .از این روفلزهایی که در سمت چپ دوره ها جای دارندخاصیت کاهندگی ونا فلزهایی که در سمت راست دوره ها جای دارندتوانایی اکسید کنندگی دارند.در موردعناصر یک گروه توانایی اکسید –کنندگی با افزایش عدد اتمی وپتانسیل کاهش می یابد.
8-تغییرات توانایی بازی هیدروکسید:توانایی بازی هیدروکسیدعناصر در گروهها ازبالا به پایین افزایش می یابد اما در دوره از سمت چپ به راست رو به کاهش است.
9-تغییرات دما وذوب یا جو ش:در هر دوره دمای ذوب و جوش تا اندازه ای به طورتناوبی تغییر می کند ولی این روندمنظم نیست و در موردعناصرگروهها نیز روندواحدی وجود ندارد

مرگ مندلیف
مندلیف دو دوم فوریه 1907 در 73 سالگی در گذشت. به طوری که می‌دانیم، از هنگامی که جدول مندلیف بوجود آمد، خانه‌های خالی آن ، یکی پس از دیگری با کشف عناصر پر می‌شد و آخرین خانه خالی جدول ، در سال 1938 با کشف آکتنیوم در پاریس پر شد.
مدلیف به کتاب های غپعلمی و تخیلی ژول ورن علاقه زیادی داشت و در اوقات فراغت به مطالعه این کتب می پرداخت . در سال 1907 هنگام مطالعه یکی از کتاب های ژول ورن بود که به آنفلوآنزا دچار شد . بسیاری از پزشکان سن پترزبورگ برای معالجه او تلاش زیادی کردند اما او بر اثر تب و عفونت گلو و سینه دوام نیاورد و در سن 73 سالگی چشم از جهان فروبست . از آن زمان به بعد همه خانه های جدول وی پر شد و آخرین خانه خالی در سال 1938 با کشف اکتینیم در پاریس پر شد و به این ترتیب جدول عجیب و غریب این شیمیدان پرکار به بار نشست . در سال 1955 عنصر شماره 101 این جدول نیز کشف شد و افتخار وی مندلیفیم نام گذاری شد .

شیمی چیست؟

شیمی چیست؟





شیمی مطالعهٔ ساختار، خواص، ترکیبات، و تغییر شکل مواد است. این علم مربوط می‌شود به عناصر شیمیایی و ترکیبات شیمیایی که شامل اتمها، مولکولها، و برهم‌کنش میان آنهاست.

پیدایش دانش شیمی (Chemistry science)
انسان از بدو خلقت که بناچار پیوسته با اشیای محیط زیست خود سرو کار پیدا کرد، با شناخت تدریجی نیازهای زندگی خویش و کسب اطلاعات بیشتری درباره خواص آنها ، آموخت که برای ادامه حیات خود به ناچار باید از آنها استفاده کند. با گذشت زمان دریافت که برای استفاده هر چه بیشتر و بهتر از این مواد ، باید در وضعیت و کیفیت آنها تغییراتی وارد کند. این کار با استفاده از گرما و بویژه کشف آتش بصورت عملی در آمده بود.
آغاز دانش بشری را در واقع می‌توان همان آغاز استفاده از آتش دانست. زیرا گرم کردن و پختن مواد و … ، تغییراتی شیمیایی می‌باشد و این خود نشان دهنده این واقعیت است که شیمی ، علمی است که در ارتباط با اولین و حیاتی‌ترین نیازهای جامعه بشری بوجود آمده و برای برآورده کردن هر چه بیشتر این نیازها که روز به روز تنوع حاصل می‌کرد، توسعه و تکام یافته است.
از آنجایی که شیمی ، علم تجربی است و بشر اولیه قبل از هر نوع تفکر و نظریه پردازی ساختار و چگونگی پیدایش مواد موجود در محیط زیست خود ، در اندیشه حفظ خود از سرما و آزمایش‌های مربوط به گرما ، رفع گرسنگی و احتمالا دفاع از هستی خویش بوده و در راه دسترسی به چگونگی تغییر و تبدیل آنها به منظور استفاده هر چه بهتر و بیشتر از آنها قدم برمی‌داشت، بر همین اساس بود که بخش شیمی نظری خیلی دیرتر از بخش کاربردی آن آغاز شد و پیشرفت کرد.
واژه شیمی خود داستان درازی دارد. ریشه این نام در واژه کیمیاست. خاستگاه واژه کیمیا را برخی از یونانی دانسته‌اند و چیستی کار کیمیاگری دگرساختن مس به طلا بود. این واژه و داستان دانش شگفت انگیز پشت آن به همراه دانشش به عربی وارد شد و اروپاییان با این واژه و دانش آن از راه عرب‌ها آشنا شدند و این دانش را با نام alchemy شناختند. آنگاه آن را در میان خود پروردند تا در سده‌های نزدیک به ریخت فرانسه شیمی به زبان ما بازگشت. دانش شیمی به دو گرایش شیمی محض و شیمی کاربردی تقسیم می‌شود.

نگاه گذرا
تیوری اتمی پایه و اساس علم شیمی است. این تیوری بیان می‌دارد که تمام مواد از واحدهای بسیار کوچکی به نام اتم تشکیل شده‌اند. یکی از اصول و قوانینی که در مطرح شدن شیمی به عنوان یک علم تأثیر به‌سزایی داشته، اصل بقای جرم است. این قانون بیان می‌کند که در طول انجام یک واکنش شیمیایی معمولی، مقدار ماده تغییر نمی‌کند. (امروزه فیزیک مدرن ثابت کرده که در واقع این انرژی است که بدون تغییر می‌ماند و همچنین انرژی و جرم با یکدیگر رابطه دارند.)
این مطلب به طور ساده به این معنی است که اگر ده‌هزار اتم داشته باشیم و مقدار زیادی واکنش شیمیایی انجام پذیرد، در پایان ما همچنان بطور دقیق ده‌هزار اتم خواهیم داشت. اگر انرژی از دست رفته یا به‌دست‌آمده را مد نظر قرار دهیم، مقدار جرم نیز تغییر نمی‌کند. شیمی کنش و واکنش میان اتم‌ها را به تنهایی یا در بیشتر موارد به‌همراه دیگر اتم‌ها و به‌صورت یون یا مولکول (ترکیب) بررسی می‌کند.
این اتم‌ها اغلب با اتم‌های دیگر واکنش‌هایی را انجام می‌دهند. (برای نمونه زمانی‌که آتش چوب را می‌سوزاند واکنشی است بین اتم‌های اکسیژن موجود در هوا و اتم‌های کربن و هیدروژن درون چوب). گاهی نیز نور بر آنها(واکنش بین اتم‌ها) تأثیر می‌گذارد(فتوکاتالیست). (یک عکس بر اثر دگرگونی‌هایی که نور بر روی مواد شیمیایی فیلم عکاسی ایجاد می‌کند شکل می‌گیرد.)
یکی از یافته‌های بنیادین و جالب دانش شیمی این بوده‌است که اتم‌ها روی‌هم‌رفته همیشه به نسبت برابر با یکدیگر ترکیب می‌شوند. سیلیس دارای ساختمانی است که نسبت اتم‌های سیلیسیوم به اکسیژن در آن یک به دو است. امروزه ثابت شده‌است که استثناهایی در زمینهٔ قانون نسبت‌های معین وجود دارد(مواد غیر استوکیومتری).
یکی دیگر از یافته‌های کلیدی شیمی این بود که زمانی که یک واکنش شیمیایی مشخص رخ می‌دهد، مقدار انرژی که بدست می‌آید یا از دست می‌رود همواره یکسان است. این امر ما را به مفاهیم مهمی مانند تعادل ، ترمودینامیک می‌رساند.
شیمی فیزیک بر پایهٔ فیزیک پیشرفته (مدرن) بنا شده‌است. اصولاً می‌توان تمام سیستم‌های شیمیایی را با استفاده از تیوری مکانیک کوانتوم شرح داد. این تیوری از لحاظ ریاضی پیچیده بوده و عمیقاً شهودی است. به هر حال در عمل و بطور واقعی تنها بررسی سیستم‌های سادهٔ شیمیایی قابل بررسی با مفاهیم مکانیکی کوانتوم امکان‌پذیر است و در اکثر مواقع باید از تقریب استفاده کرد(مانند تیوری کاری دانسیته). بنابراین درک کامل مکانیک کوانتوم برای تمامی مباحث شیمی کاربرد ندارد؛ زیرا نتایج مهم این تیوری (بخصوص اربیتال اتمی) با استفاده از مفاهیم ساده‌تری قابل درک و به‌کارگیری هستند.
با اینکه در بسیاری موارد ممکن است مکانیک کوانتوم نادیده گرفته شود، مفهوم اساسی که پشت آن است، یعنی کوانتومی کردن انرژی، چنین نیست. شیمی‌دان‌ها برای بکارگیری کلیه روش‌های طیف نمایی به آثار و نتایج کوانتوم وابسته‌اند، هرچند که ممکن است بسیاری از آنها از این امر آگاه نباشند. علم فیزیک هم ممکن است مورد بی توجهی واقع شود، اما به هر حال برآیند نهایی آن (مانند رزونانس مغناطیسی هسته‌ای) پژوهیده و مطالعه می‌شود.
یکی دیگر از تیوری‌های اصلی فیزیک مدرن که نباید نادیده گرفته شود نظریه نسبیت است. این نظریه که از دیدگاه ریاضی پیچیده‌است، شرح کامل فیزیکی علم شیمی است. خوشبختانه مفاهیم نسبیتی تنها در برخی از محاسبات خیلی دقیق ساختمان هسته، به‌ویژه در عناصر سنگین‌تر، کاربرد دارند و در عمل تقریباً با شیمی پیوند ندارند.

طبقه‌بندی علم شیمی

شیمی محض یا شیمی نظری
درباره شناخت خواص و ساختار و ارتباط خواص و ساختار مواد و قوانین مربوط به آنها بحث می‌کند.

شیمی عملی یا شیمی کاربردی
راههای تهیه ، استخراج مواد خالص از منابع طبیعی ، تبدیل مواد به یکدیگر و یا سنتز آنها را مورد بررسی قرار می‌دهد.

دامنه علم شیمی
بدین ترتیب دامنه علم شیمی در زمینه‌های نظری و عملی فوق‌العاده گسترش حاصل کرد و نقشهای حساس را در زندگی انسان به عهده گرفت. بطوری که امروزه میزان برخورداری هر جامعه از تکنولوژی شیمیایی ، معیار قدرت و ثروت و رفاه آن جامعه محسوب شده و بصورت جزیی از فلسفه زندگی در آمده است.
بخش‌های اصلی دانش شیمی عبارت‌اند از:
شیمی تجزیه، که به تعیین ترکیبات مواد و اجزای تشکیل دهنده آن‌ها می‌پردازد.
شیمی آلی، که به مطالعهٔ ترکیبات کربن‌دار، غیر از ترکیباتی چون دو اکسید کربن (دی اکسید کربن) می‌پردازد.
شیمی معدنی، که به اکثریت عناصری که در شیمی آلی روی آنها تاکید نشده و برخی خواص مولکولها می‌پردازد.
شیمی فیزیک، که پایه و اساس کلیهٔ شاخه‌های دیگر را تشکیل می‌دهد، و شامل ویژگی‌های فیزیکی مواد و ابزار تیوری بررسی آنهاست.
دیگر رشته‌های مطالعاتی و شاخه‌های تخصصی که با شیمی پیوند دارند عبارت‌اند از: علم مواد، مهندسی شیمی، شیمی بسپار، شیمی محیط زیست و داروسازی.

شاخه‌های شیمی
شیمی آلی
شیمی معدنی
شیمی تجزیه
شیمی فیزیک
▪ سینتیک شیمیایی
▪ تعادل شیمیایی
▪ اسیدها و بازها
▪ الکترو شیمی
▪ زیست‌شیمی (بیوشیمی)
▪ رادیو شیمی

ریشه‌یابی
کلمه شیمی (انگلیسی:chemistry) در اصل از کلمه یونانی کیمِیا (χημεία) به معنای «به هم فشردن»، «با هم ساختن»، «جوش دادن» و «آلیاژ» و … گرفته شده‌است. همینطور می‌تواند از کلمه فارسی کیمیا به معنی «طلا» و کلمه فرانسوی alkemie یا عربی الکیمیا (هنر دگرگونی) گرفته شده باشد.

علم شیمی
شاخه‌ای از علوم تجربی است که از یک سو درباره شناخت خواص ، ساختار و ارتباط بین خواص و ساختار مواد و قوانین مربوط به آنها بحث می‌کند. از سوی دیگر ، راههای تهیه ، استخراج مواد خالص از منابع طبیعی ، تبدیل مواد به یکدیگر و یا سنتز آنها به روشی که به صرفه مقرون باشد، مورد بحث و بررسی قرار می‌د‌هند. این علم با ترکیب و ساختار و نیروهایی که این ساختارها را برپا نگه داشته است، سروکار دارد.
شرح تفصیلی درباره چگونگی واکنش‌ها و سرعت پیشرفت آنها ، شرایط لازم برای فراهم آوردن تغییرات مطلوب و جلوگیری از تغییرات نامطلوب ، تغییرات انرژی که با واکنش‌های شیمیایی همراه است، سنتز موادی که در طبیعت صورت می‌گیرد و آنهایی که مشابه طبیعی ندارند و بالاخره روابط کمی جرمی بین مواد در تغییرات شیمیایی در علم شیمی مورد مطالعه قرار می‌گیرد.

سیر تکامی و رشد
اولین نظریه درباره ساختار مواد ، حدود ۴۰۰ سال قبل از میلاد توسط فلاسفه یونان بیان شد، در صورتی که شاخه کاربردی شیمی چندین هزار سال قبل از میلاد رواج داشت و قابلیت توجیه پیدا کرده بود. به چند مورد اشاره می‌کنیم.
▪ طلا ، اولین فلزی بود که توسط بشر کشف شد و نقره پس از طلا کشف شد و در زندگی بشر کاربرد پیدا کرد.
مس سومین فلزی بود که کشف شد. سرب ، قلع و جیوه بعد از مس و قبل از آهن کشف شدند.
آهن به علت دشواریهایی که در استخراج آن وجود داشت، دیرتر از فلزات فوق کشف و مورد استفاده قرار گرفت.
▪ ساختن شیشه رنگی (سبز و آبی) و شیشه بی‌رنگ در مصر و بین‌النهرین و در کشورهای مجاور دریای اژه و دریای سیاه و تهیه بطری‌های شیشه‌ای در بین‌النهرین متداول شد.
▪ کوزه‌گری ، سفالگری و استفاده از لوحه‌های سفالی و تهیه لعاب و لعاب دادن ظروف سفالی در مصر و بین‌النهرین متداول شد.
▪ تهیه پارچه‌های نخی ، ابریشمی و پشمی و رنگرزی آنها با رنگهای نیلی ارغوانی و قرمز و … رواج یافت. رنگ قرمز از حشره‌ای به نام قرمزدانه ، رنگ نیلی از گیاهی بنام ایندیگو و رنگ بنفش از جانور دریایی بدست آمد.
▪ دباغی پوست با استفاده از زاجها ، تهیه الکل ، سرکه ، روغن ، مومیا و استخراج نمک از آب دریا انجام گرفت.

شیمی تجزیه
هدف یک تجزیه شیمیایی ، فراهم آوردن اطلاعاتی درباره ترکیب نمونه‌ای از یک ماده است. در بعضی موارد اطلاعات کیفی در مورد حضور یا عدم حضور یک یا چند جزء در نمونه کافی است. در مواردی دیگر ، اطلاعات کمی مورد نظر است. بدون در نظر گرفتن هدف نهایی ، اطلاعات مورد نیاز در انتها ، توسط اندازه‌ گیری یکی از خواص فیزیکی بدست می‌آیند که این خاصیت بطور مشخص به جزء یا اجزاء سازنده مورد نظر مربوط است. زمینه‌های تاریخی تجریه کیفی به ابتکار «پروفسور رونالد بلچر» که به نارساییهای متعدد سیستمهای تجزیه کیفی معدنی موجود پی برده و تصمیم به اصلاح این سیستمها از طریق تحقیقات تجربی و به بحث گذاشتن موضوع در یک گروه از آنالیستهای باتجربه گرفته بود، موسسه MAQA (موسسه تجزیه کیفی میدلندز) تاسیس شد. هدفهای موسسه عبارت بود از تهیه طرحهایی برای توصیه در:
▪ بررسی سیستماتیک کاتیونهای معمولی مبتنی بر روشهای کلاسیک جا افتاده.
▪ بررسی آنیونها.
▪ بررسی عناصر غیر معمول.
▪ بررسی نامحلولها.
طرح MAQA یکی از سلسله سیستمهای تجزیه کیفی هدف است که برخی از آنها به قرن هیجدهم بر‌می‌گردد. طرحهای قدیمی‌تر از بعضی جهات جالب‌اند، به این معنی که بسیاری از جداسازیها و واکنشهای انتخابی که هنوز هم جای خود را در اعمال تجزیه کیفی حفظ کرده‌اند، از آنها نشات گرفته است.
نیاز مبرم به تشخیص سنگها و مواد معدنی مفید موجب پدید آمدن تجزیه کیفی معدنی شد. در نتیجه ، در جاهایی که صنایع پیشرفته استخراج شکوفا می‌شد، این هنر رشد سریعی کرد که نمونه بارز آن ، در سوئد بود. بدون آن که حق سایر بنیانگذاران تجزیه را فراموش کرده باشیم، شیمیدان سوئدی به نام «توربون برگمن» را ممکن است بتوان بعنوان بنیانگذار تجزیه کیفی سیستماتیک معرفی کرد. رده بندی روشهای تجزیه‌ای رده بندی روشهای تجزیه‌ای معمولا بر طبق خاصیتی است که در فرآیند اندازه ‌گیری نهایی مشاهده می‌شود. در جدول زیر فهرستی از مهمترین این خاصیتها و همچنین نام روشهایی که مبتنی بر این خاصیتها می‌باشند، دیده می‌شود.
بر این نکته توجه داشته باشیم که تا حدود سال ۱۹۲۰ تقریبا تمام تجزیه‌ها براساس دو خاصیت جرم و حجم قرار داشتند. در نتیجه ، روشهای وزنی و حجمی به نام روشهای کلاسیک تجزیه‌ای شهرت یافته‌اند. بقیه روشها شامل روشهای دستگاهی است. علاوه بر تاریخ توسعه این روشها ، جنبه‌های معدودی روشهای دستگاهی را از روشهای کلاسیک جدا و متمایز می‌سازند. بعضی از تکنیکهای دستگاهی حساستر از تکنیکهای کلاسیک می‌باشند. ولی بعضیها حساس‌تر نیستند. با ترکیب خاصی از عناصر یا ترکیبات ، یک روش دستگاهی ممکن است بیشتر اختصاصی باشد. در مواردی دیگر ، یک روش حجمی یا وزنی ، کمتر در معرض مزاحمت قرار دارد. مشکل است که گفته شود که کدامیک از نظر صحت ، راحتی و صرف زمان بر دیگری برتری دارد.
همچنین این مساله درست نیست که روشهای دستگاهی ، الزاما دستگاههای گرانتر یا پیچیده‌تری را بکار می‌گیرند و در حقیقت ، استفاده از یک ترازوی خودکار نوین در یک تجزیه وزنی شامل دستگاه ظریفتر و پیچیده‌تری در مقایسه با بسیاری از روشهای دیگری است که در جدول زیر ثبت شده‌اند. روشهای تجزیه‌ای مبتنی بر اندازه ‌گیری خاصیت خاصیت فیزیکی که اندازه گیری می‌شود. وزنی جرم حجمی حجم طیف نورسنجی (اشعه ایکس ، ماوراء بنفش ، مرئی ، IR)؛ رنگ سنجی ؛ طیف بینی اتمی ؛ رزونانس مغناطیسی هسته و رزونانس اسپین الکترون جذب تابش طیف بینی نشری (اشعه ماوراء بنفش ، ایکس ، مرئی)؛ نور سنجی شعله‌ای؛ فلوئورسانس (اشعه ایکس ، فرابنفش و مرئی) ؛ روشهای رادیوشیمیایی نشر تابش کورسنجی ، نفلومتری ، طیف بینی رامان پراکندن تابش شکست سنجی و تداخل سنجی شکست تابش روشهای پراش اشعه ایکس و الکترون پراش تابش قطبش سنجی ، پاشندگی چرخش نوری و دو رنگی نمایی دورانی چرخش تابش پتانسیل سنجی ، پتانسیل سنجی با زمان پتانسیل الکتریکی رسانا سنجی رسانایی الکتریکی پلاروگرافی ، تیتراسیونهای آمپرسنجی جریان الکتریکی کولن سنجی کمیت الکتریسیته طیف سنجی جرمی نسبت جرم به بار روشهای رسانایی حرارتی و آنتالپی خواص گرمایی روشهای جداسازی در بیشتر موارد ، تجزیه یک نمونه از ماده ، قبل از اندازه گیری فیزیکی نهایی آن ، ابتدا احتیاج به یک یا چند مرحله زیر دارد:
نمونه برداری ، برای فراهم کردن نمونه‌ای که ترکیب آن ، نماینده توده ماده باشد.

تهیه و انحلال مقدار معینی از نمونه
جداسازی گونه مورد اندازه گیری از اجزاء سازنده‌ای که در سنجش نهایی مزاحمت ایجاد می‌کنند.
این مراحل معمولا بیشتر از خود اندازه گیری نهایی تولید مزاحمت می‌کنند و خطاهای بزرگتری را باعث می‌شوند. روشهای جداسازی به این دلیل مورد احتیاج‌اند که خواص فیزیکی و شیمیایی مناسب برای اندازه گیری غلظت معمولا بین چندین عنصر یا ترکیب مشترک است. در بررسی مواد بسیار نزدیک و مرتبط به هم ، مشکل جداسازی بیشترین اهمیت را می‌یابد و لذا نیاز به تکنیکهایی نظیر کروماتوگرافی ، تقطیر جزء به جزء، استخراج ناهمسو و یا الکترولیز در پتانسیل کنترل شده دارد. انتخاب روش برای یک مسئله تجزیه‌ای جدول مذکور ، حاکی از این است که برای شیمیدانی که با یک مسئله تجزیه‌ای روبرو است، غالبا روشهای متعددی وجود دارند که وی می‌تواند یکی از آنها را انتخاب کند. مدت زمانی که او باید برای کار تجزیه صرف کند و کیفیت نتایج حاصل ، بنحوی حساس ، به این انتخاب بستگی دارد. شیمیدان برای اخذ تصمیم خود در مورد انتخاب روش ، باید پیچیدگی ماده مورد تجزیه ، غلظت گونه مورد نظر ، تعداد نمونه‌هایی که باید تجزیه شوند و دقت مورد نیاز را در نظر گیرد. پس از این ، انتخاب وی به دانش او در مورد اصول اساسی که زیر بنای هر یک از این روشهای قابل دسترسی است و در نتیجه قدرت و محدودیت این روشها بستگی خواهد داشت.
دستگاهوری در تجزیه در مفهومی بسیار وسیع ، یک دستگاه که برای تجزیه شیمیایی مورد استفاده قرار می‌گیرد، داده‌های کمی تولید نمی‌کند، بلکه در عوض بسادگی اطلاعات شیمیایی را به شکلی تبدیل می‌کند که آسانتر قابل مشاهده است. بنابراین به دستگاه می‌توان به صورت یک وسیله ارتباطی نگریست. دستگاه این هدف را در مراحل مختلف زیر انجام می‌دهد:
▪ تولید یک علامت
▪ تبدیل این علامت به علامتی با ماهیت متفاوت (تبدیل نامیده می‌شود).
▪ تقویت علامت تبدیل شده
ارائه این علامت به صورت یک جابجایی بر روی یک صفحه مندرج یا صفحه یک ثبات.
لزومی ندارد که تمام این مراحل مجموعا در هر دستگاه انجام گیرد. در نتیجهٔ ظهور این همه مدارات الکترونیکی در آزمایشگاه ، یک شیمیدان امروزی خود را با این سوال روبرو می‌بیند که چه مقدار الکترونیک باید بداند تا بتواند موثرترین استفاده را از وسایل موجود برای تجزیه ، بکند. مهم برای یک شیمیدان این است که قسمت عمده کوشش خود را به اصول شیمیایی ، اندازه گیریها و محدودیتها و قوتهای ذاتی آن معطوف دارد.

شیمی آلی
شیمی آلی بخشی از دانش شیمی است که بررسی هیدروکربن‌ها می‌‌پردازد. به همین دلیل به آن شیمی ترکیبات کربن نیز گفته می‌شود . پسوند «آلی» یادگار روزهایی است که مواد شیمیایی را بسته به این که از چه منبعی به دست می‌آمدند، به دو دسته معدنی و آلی تقسیم می‌کردند.
مواد معدنی آنهایی بودند که از معادن استخراج می‌شدند و مواد آلی آنهایی که از منابع گیاهی یا حیوانی یعنی از موادی که توسط موجودات زنده تولید می‌شدند، به دست می‌آمدند.
در واقع تا پیرامون سال ۱۸۵۰ بسیاری از شیمیدانان معتقد بودند، که خاستگاه مواد آلی باید موجودات زنده باشند و در نتیجه این مواد را هرگز نمی‌توان از مواد معدنی سنتز نمود.
موادی که از منابع آلی به دست می‌آیند، در یک خصوصیت مشترکند: همه آنها دارای عنصر کربن هستند.
حتی پس از آن که مشخص شد این مواد لزوماً نبایستی از منابع زنده به دست آیند و می‌توان آنها را در آزمایشگاه سنتز کرد، باز هم مناسبت داشت تا نام آلی برای توصیف آنها و موادی همانند آنها حفظ شود. این تقسیم‌بندی بین مواد معدنی و آلی تا به امروز حفظ شده است.
امروزه اگر چه هنوز بسیاری از ترکیبات کربن به آسانی از منابع گیاهی و جانوری بدست می‌آیند، ولیکن بسیاری از آنها نیز سنتز می‌شوند. از ترکیبات گاهی از مواد معدنی مانند کربناتها و سیانیدها سنتز می‌شوند ولی غالباً از سایر مواد آلی تهیه می‌گردند.
دو منبع بزرگ مواد آلی که از آنها مواد آلی ساده تأمین می‌شوند، نفت و ذغال سنگ است. (هر دو اینها از مفهوم قدیمی «آلی» بوده و فراورده تجزیه (کافت) گیاهان و جانوران هستند). این ترکیبات ساده به عنوان مصالح ساختمانی، در ساختن ترکیبات بزرگ‌تر و پیچیده‌تر مصرف می‌شوند.
نفت و زغال سنگ سوختهای فسیلی هستند که در طی هزاران سال بر روی هم انباشته شده وغیر قابل جایگزینی هستند. این مواد — بویژه نفت — جهت رفع نیازهای انرژی که به طور دایم در حال افزایش است، با سرعت خطرناکی مصرف می‌گردند. امروزه کمتر از ۱۰٪ نفت برای ساختن مواد شیمیایی مصرف می‌شود و قسمت اعظم آن برای تولید انرژی سوزانده می‌شود. خوشبختانه منابع دیگری برای ایجاد نیرو از قبیل منبع خورشیدی، گرمای زمین، باد، امواج، جزر و مد و انرژی هسته‌ای وجود دارد.
اما چگونه می‌توان منبع دیگری به جای مواد آلی پیدا نمود؟ البته در نهایت باید به جایی که سوختهای سنگواره‌ای از آنجا ناشی می‌شوند یعنی توده زیستی برگشت نمود، اما این بار به طور مستقیم و بدون دخالت هزاران سال. توده زیستی قابل تجدید است و چنانچه به طور مناسب مصرف شود، تا زمانی که ما بر روی این سیاره بتوانیم وجود داشته باشیم آن هم باقی می‌ماند. در ضمن می‌گویند که نفت با ارزش‌تر از آن است که سوزانده شود.
چه خصوصیتی در ترکیبات کربن وجود دارد که آنها را از ترکیبات مربوط به صد و چند عنصر دیگر جدول تناوبی متمایز می‌سازد؟ لااقل قسمتی از این جواب به نظر می‌رسد که چنین باشد: تعداد بسیار زیادی از ترکیبات کربن وجود دارند که مولکولهای آنها می‌توانند بسیار بزرگ و پیچیده باشد.
تعداد ترکیباتی که دارای کربن هستند چندین برابر بیشتر از تعداد ترکیبات بدون کربن است. این مواد آلی در خانواده‌های مختلف قرار می‌گیرند، و معمولاً در بین مواد معدنی، همتایی ندارند.
مولکولهای آلی شامل هزاران اتم شناخته شده‌اند، و ترتیب قرار گرفتن اتمها حتی در مولکولهای نسبتاً کوچک بسیار پیچیده است. یکی از مسایل اصلی در شیمی آلی، آگاهی از طرز قرار گرفتن اتمها در مولکولها و یا تعیین ساختمان ترکیبات است.
راه‌های زیادی برای شکستن این مولکولهای پیچیده و یا نوآرایی آنها برای ایجاد مولکولهای جدید وجود دارد؛ روشهای مختلفی برای اضافه نمودن اتمهای جدید به این مولکولها و یا جایگزین نمودن اتمهای جدید به جای اتمهای قدیم وجود دارد. بخش کلان شیمی آلی به پژوهش در مورد این واکنشها اختصاص دارد، یعنی تشخیص این که این واکنشها کدامند، چگونه انجام می‌شوند و چگونه می‌توان از آنها برای سنتز یک ترکیب دلخواه استفاده نمود.
اتمهای کربن می‌توانند به میزانی که برای اتم هیچ عنصر دیگری مقدور نیست، به یکدیگر بپیوندند. اتمهای کربن می‌توانند زنجیرهایی شامل هزاران اتم و یا حلقه‌هایی با اندازه‌های متفاوت ایجاد نمایند؛ زنجیرها و حلقه‌ها می‌توانند دارای شاخه و پیوندهای عرضی باشند. به اتمهای کربن این زنجیرها و حلقه‌ها، اتمهای دیگری که عمدتاً هیدروژن و همچنین فلویور، کلر، برم، ید، اکسیژن، نیتروژن، گوگرد، فسفر و سایر اتمهای گوناگون میپیوندد.
هر آرایش مختلف از اتمها مربوط به ترکیب متفاوتی است، و هر ترکیب یک رشته ویژگیهای شیمیایی و فیزیکی ویژه خود را دارد. از این رو غیرمنتظره نیست که امروزه بیشتر از ده میلیون ترکیب شناخته شده کربن وجود داشته باشد و هر سال به این تعداد نیم میلیون ترکیب تازه افزوده گردد. تعجب‌آور نیست که بررسی این ترکیبات، رشته ویژه‌ای را در شیمی به خود اختصاص دهد.
شیمی آلی اهمیت فوق‌العاده زیادی در تکنولوژی دارد و در واقع، شیمی رنگدانه‌ها و داروها، کاغذ و جوهر، رنگهای نقاشی و پلاستیکها، بنزین و تایرهای لاستیکی است؛ همچنین، شیمی غذایی است که می‌خوریم و لباسی است که می‌پوشیم.
شیمی آلی شالوده زیست‌شناسی و پزشکی است. ساختمان موجودات زنده، به غیر از آب، عمدتاً از مواد آلی ساخته شده‌اند؛ مولکولهای مورد بحث در زیست‌شناسی مولکولی همان مولکولهای آلی هستند. زیست‌شناسی در مقیاس مولکولی همان شیمی آلی است.
شاید دور از انتظار نباشد که بگوییم ما در عصر کربن زندگی می‌کنیم. هر روزه، روزنامه‌ها ذهن ما را متوجه ترکیبات کربن نظیر کلسترول و چربیهای اشباع نشده، هورمونها و استروییدها، حشره‌کشها و فرومونها، عوامل سرطانزا و شیمی درمانی، DNA و ژنها می‌نمایند. به خاطر نفت، جنگها به راه افتاده است.
وقوع دو فاجعه بشریت را تهدید می‌کند و هر دو ناشی از تجمع ترکیبات کربن در جو است؛ یکی نازک شدن لایه ازون که عمدتاً به واسطه وجود کلروفلویورو کربنها است و دیگری پدیده گلخانه که به خاطر حضور متان، کلروفلویور و کربنها و سرآمد همه کربن دی‌اکسید است.
شاید به همین مناسبت بوده است که مجله Science در سال ۱۹۹۰، الماس را که یکی از فرمهای آلوتروپی کربن است به عنوان مولکول سال انتخاب کرده است. و مولکول آلوتروپ تازه‌یاب فولرن باکمینستر کربن ۶۰ (buckminsterfullerene-C۶۰) است که هیجان بسیاری را در دنیای شیمی ایجاد کرده است، هیجانی که از «زمان ککوله تاکنون» دیده نشده است.
در بحث شیمی آلی، آموختن اعداد یونانی و پیشوندهای اعداد یونانی به عنوان یک پیش نیاز مطرح می‌گردد. این اعداد در نام گذاری انواع هیدرو کربن‌ها مصرف دارند.

بیو شیمی - زیست شیمی
اساس شیمیایی بسیاری از واکنشها در جانداران شناخته شده است. کشف ساختمان دو رشته‌ای دزاکسی ریبونوکلییک اسید (DNA)، جزییات سنتز پروتیین از ژن ها، مشخص شدن ساختمان سه بعدی و مکانیسم فعالیت بسیاری از مولکولهای پروتیینی، روشن شدن چرخه‌های مرکزی متابولیسم وابسته بهم و مکانیسم های تبدیل انرژی و گسترش فناوری Recombinant DNA (نوترکیبی DNA) از دستاوردهای برجسته زیست‌شیمی هستند. امروزه مشخص شده که الگو و اساس مولکولی باعث تنوع جانداران شده است.
تمامی ارگانیسم ها از باکتری ها مانند اشرشیاکلی تا انسان، از واحدهای ساختمانی یکسانی که به صورت ماکرومولکول ها تجمع می‌یابند، تشکیل یافته‌اند. انتقال اطلاعات ژنتیکی از DNA به ریبونوکلییک اسید (RNA) و پروتیین در تمامی جانداران به صورت یکسان صورت می‌گیرد. آدنوزین تری فسفات (ATP)، فرم عمومی انرژی در سیستم های زیستی، از راه های مشابهی در تمامی جانداران تولید می‌شود.

تاثیر زیست‌شیمی در پزشکی
مکانیسم های مولکولی بسیاری از بیماریها، از قبیل بیماری کم خونی و اختلالات ارثی متابولیسم، مشخص شده است. اندازه گیری فعالیت آنزیمها در تشخیص کلینیکی ضروری می‌باشد. برای مثال، سطح بعضی از آنزیمها در سرم نشانگر این است که آیا بیمار اخیرا سکته قلبی کرده است یا نه؟بررسی DNAدر تشخیص ناهنجاریهای ژنتیکی، بیماریهای عفونی و سرطانها نقش مهمی ایفا می‌‌کند. سوشهای باکتریایی حاوی DNA نوترکیب که توسط مهندسی ژنتیک ایجاد شده است، امکان تولید پروتیینهایی مانند انسولین و هورمون رشد را فراهم کرده است. به علاوه، زیست‌شیمی اساس علایم داروهای جدید خواهد بود. در کشاورزی نیز از فناوری DNA نوترکیب برای تغییرات ژنتیکی روی ارگانیسمها استفاده می‌شود.
گسترش سریع علم و تکنولوژی زیست‌شیمی در سالهای اخیر، پژوهشگران را قادر ساخته که به بسیاری از سوالات و اشکالات اساسی در مورد زیست‌شناسی و علم پزشکی پاسخ بدهند. چگونه یک تخم حاصل از لقاح گامت های نر و ماده به سلول های ماهیچه‌ای، مغز و کبد تبدیل می‌شود؟ به چه صورت سلول ها با همدیگر به صورت یک اندام پیچیده درمی‌آیند؟ چگونه رشد سلولها کنترل می‌شود؟ علت سرطان چیست؟ سازوکار حافظه کدام است؟ اساس مولکولی روان‌گسیختگی (شیزوفرنی) چیست؟

مدلهای مولکولی ساختمان سه بعدی
وقتی ارتباط سه بعدی بیومولکولها و نقش بیولوژیکی آنها را بررسی می‌کنیم، سه نوع مدل اتمی برای نشان دادن ساختمان سه بعدی مورد استفاده قرار می‌گیرد.
مدل فضاپرکن (Space _ Filling) این نوع مدل، خیلی واقع بینانه و مصطلح است. اندازه و موقعیت یک اتم در مدل فضا پرکن بوسیله خصوصیات باندها و شعاع پیوندهای واندروالسی مشخص می‌شود. رنگ مدلهای اتم طبق قرارداد مشخص می‌شود. مدل گوی و میله (ball _ and _ Stick) این مدل به اندازه مدل فضا پرکن، دقیق و منطقی نیست. برای اینکه اتمها به صورت کروی نشان داده شده و شعاع آنها کوچکتر از شعاع واندروالسی است.
مدل اسکلتی (Skeletal) ساده‌ترین مدل مورد استفاده است و تنها شبکه مولکولی را نشان می‌دهد و اتمها به وضوح نشان داده نمی‌شوند. این مدل، برای نشان دادن ماکرومولکولهای بیولوژیکی از قبیل مولکولهای پروتیینی حاوی چندین هزار اتم مورد استفاده قرار می‌گیرد. فضا در نشان دادن ساختمان مولکولی، بکار بردن مقیاس اهمیت زیادی دارد. واحد آنگستروم، بطور معمول برای اندازه‌گیری طول سطح اتمی مورد استفاده قرار می‌گیرد. برای مثال، طول باند C _ C، مساوی ۱،۵۴ آنگستروم می‌باشد. بیومولکولهای کوچک، از قبیل کربوهیدراتها و اسیدهای آمینه، بطور تیپیک، طولشان چند آنگستروم است. ماکرومولکولهای بیولوژیکی، از قبیل پروتیینها، ۱۰ برابر بزرگتر هستند. برای مثال، پروتیین حمل کننده اکسیژن در گلبولهای قرمز یا هموگلوبین، دارای قطر ۶۵ آنگستروم است. ماکرومولکولهای چند واحدی ۱۰ برابر بزرگتر می‌باشند. ماشینهای سنتز کننده پروتیین در سلولها یا ریبوزومها، دارای ۳۰۰ آنگستروم طول هستند. طول اکثر ویروسها در محدوده ۱۰۰ تا ۱۰۰۰ آنگستروم است. سلولها بطور طبیعی ۱۰۰ برابر بزرگتر هستند و در حدود میکرومتر (μm) می‌باشند. برای مثال قطر گلبولهای قرمز حدود ۷μm است. میکروسکوپ نوری حداقل تا ۲۰۰۰ آنگستروم قابل استفاده است. مثلا میتوکندری را می‌توان با این میکروسکوپ مشاهده کرد. اما اطلاعات در مورد ساختمانهای بیولوژیکی از مولکولهای ۱ تا آنگستروم با استفاده از میکروسکوپ الکترونی X-ray بدست آمده است. مولکولهای حیات ثابت می‌باشند.

زمان لازم برای انجام واکنشهای زیست‌شیمیایی
واکنش‌های شیمیایی در سامانه‌های زیستی به وسیله آنزیمها کاتالیز می‌شوند. آنزیمها سوبستراها را در مدت میلی ثانیه به محصول تبدیل می‌کنند. سرعت بعضی از آنزیمها حتی سریعتر نیز می‌باشد، مثلا کوتاهتر از چند میکروثانیه. بسیاری از تغییرات فضایی در ماکرومولکولهای بیولوژیکی به سرعت انجام می‌گیرد. برای مثال، باز شدن دو رشته هلیکسی DNA از همدیگر که برای همانندسازی و رونویسی ضروری است، یک میکروثانیه طول می‌کشد. جابجایی یک واحد (Domain) از پروتیین با حفظ واحد دیگر، تنها در چند نانوثانیه اتفاق می‌افتد. بسیاری از پیوندهای غیر کووالان مابین گروههای مختلف ماکرومولکولی در عرض چند نانوثانیه تشکیل و شکسته می‌شوند. حتی واکنشهای خیلی سریع و غیر قابل اندازه گیری نیز وجود دارد. مشخص شده است که اولین واکنش در عمل دیدن، تغییر در ساختمان ترکیبات جذب کننده فوتون به نام رودوپسین می‌باشد که در عرض اتفاق می‌افتد.
انرژی ما بایستی تغییرات انرژی را به حوادث مولکولی ربط دهیم. منبع انرژی برای حیات، خورشید است. برای مثال، انرژی فوتون سبز، حدود ۵۷ کیلوکالری بر مول (Kcal/mol) بوده و ATP، فرمول عمومی انرژی، دارای انرژی قابل استفاده به اندازه ۱۲ کیلوکالری بر مول می‌باشد. برعکس، انرژی متوسط هر ارتعاش آزاد در یک مولکول، خیلی کم و در حدود ۰،۶ کیلوکالری بر مول در ۲۵ درجه سانتیگراد می‌باشد. این مقدار انرژی، خیلی کمتر از آن است که برای تجزیه پیوندهای کووالانسی مورد نیاز است، (برای مثال ۸۳Kcal/mol برای پیوند C _ C). بدین خاطر، شبکه کووالانسی بیومولکولها در غیاب آنزیمها و انرژی پایدار می‌باشد. از طرف دیگر، پیوندهای غیر کووالانسی در سیستمهای بیولوژیکی بطور تیپیک دارای چند کیلوکالری انرژی در هر مول می‌باشند. بنابراین انرژی حرارتی برای ساختن و شکستن آنها کافی است. یک واحد جایگزین در انرژی، ژول می‌باشد که برابر ۰،۲۳۹ کالری است.

ارتباطات قابل بازگشت بیومولکولها
ارتباطات قابل برگشت بیومولکولها از سه نوع پیوند غیر کووالانسی تشکیل شده است. ارتباطات قابل برگشت مولکولی، مرکز تحرک و جنبش موجود زنده است. نیروهای ضعیف و غیر کووالان نقش کلیدی در رونویسی DNA، تشکیل ساختمان سه بعدی پروتیینها، تشخیص اختصاصی سوبستراها بوسیله آنزیمها و کشف مولکولهای سیگنال ایفا می‌کنند. به علاوه، اکثر مولکولهای زیستی و فرآیندهای درون‌مولکولی، بستگی به پیوندهای غیر کووالانی همانند پیوندهای کووالانی دارند. سه پیوند اصلی غیر کووالان عبارت است از: پیوندهای الکترواستاتیک، پیوندهای هیدروژنی و پیوندهای واندروالسی آنها از نظر ژیومتری، قدرت و اختصاصی بودن با هم تفاوت دارند. علاوه از آن، این پیوندها به مقدار زیادی از طرق مختلف در محلولها تحت تاثیر قرار می‌گیرند.

ادامه دارد ....

اتم چیست؟

اتم چیست؟

اتم کوچکترین واحد تشکیل دهنده یک عنصر شیمیایی است که خواص منحصر به فرد آن عنصر را حفظ می‌کند. تعریف دیگری آن را به عنوان کوچکترین واحدی در نظر میگیرد که ماده را میتوان به آن تقسیم کرد بدون اینکه اجزاء بارداری از آن خارج شود.[۲] اتم ابری الکترونی، تشکیل‌شده از الکترون‌ها با بار الکتریکی منفی، که هستهٔ اتم را احاطه کرده‌است. هسته نیز خود از پروتون که دارای بار مثبت است و نوترون که از لحاظ الکتریکی خنثی است تشکیل شده است. زمانی که تعداد پروتون‌ها و الکترون‌های اتم با هم برابر هستند اتم از نظر الکتریکی در حالت خنثی یا متعادل قرار دارد در غیر این صورت آن را یون می‌نامند که می‌تواند دارای بار الکتریکی مثبت یا منفی باشد. اتم‌ها با توجه به تعداد پروتون‌ها و نوترون‌های آنها طبقه‌بندی می‌شوند. تعداد پروتون‌های اتم مشخص کننده نوع عنصر شیمیایی و تعداد نوترون‌ها مشخص‌کننده ایزوتوپ عنصر است. [۳]
نظریه فیزیک کوانتم تصویر پیچیده ای از اتم ارائه میدهد و این پیچیدگی دانشمندان را مجبور میکند که جهت توصیف خواص اتم بجای یک تصویر متوسل به تصاویر شهودی متفاوتی از اتم شوند. بعضی وقت ها مناسب است که به الکترون به عنوان یک ذره متحرک به دور هسته نگاه کرد و گاهی مناسب است به آنها عنوان ذراتی که در امواجی با موقعیت ثابت در اطراف هسته (مدار: orbits) توزیع شده اند نگاه کرد. ساختار مدار ها تا حد بسیار زیادی روی رفتار اتم تأثیر گذارده و خواص شیمیایی یک ماده توسط نحوه دسته بندی این مدار ها معین میشود.

ریشه لغوی
این کلمه ، از کلمه یونانی atomos ، غیر قابل تقسیم ، که از a- ، بمعنی غیر و tomos، بمعنی برش ، ساخته شده است. معمولا به معنای اتم‌های شیمیایی یعنی اساسی‌ترین اجزاء مولکول‌ها و مواد ساده می‌باشد.

تاریخچه شناسایی اتم
اتم - ملکول - ساختار اتم
از مدتها قبل ،انسان می داند که تمام مواد از ذرات بنیادی یا عناصر شیمیایی ساخته شده اند. از میان این مواد،مثلاً می توان از اکسیژن ،گوگرد ،و آهن نام برد .کوچکترین ذره آهن ،یک اتم آهن و کوچکترین ذره گوگرد ،یک اتم گوگرد نامیده می شود .
آهن خالص فقط دارای اتمهای آهن است و گوگرد خالصل نیز فقط اتمهای گوگرد دارد . اتمها جرمهای گوناگونی دارند .سبکترین آنها اتم هیدوژن است .
اتمهای آهن بسیار سنگینتر از هیدروژن و اتمهای "اورانیم" از اتمهای آهن سنگینترند ،یعنی جرمشان بیشتر ایت .واژه اتم ،از بان یونانی گرفته شده و معنای آن در واقع "ناکسستنی" یا "تقسیم ناپذیر" است .
امروزه ما می دانیم که امها را هم می توان به اجزاء کوچکتر تقسیم کرد.ولی به هر حال ،اگر مثلاً یک اتم آهن را درهم بشکنیم ،اجزاء شکسته شده ،و دیگر آهن نسیتند و خصوصیات آهن را ندارند به این دلیل است که در بسیاری از کتابهای شیمی تعریف زیر در باره واژه "اتم" آورده شده است :
"یک اتم کوچکترین سنگ بنای یک عنصرشیمیایی است که کلیه خصوصیات ویژه آن عنصر را دارا بوده و در صورت تقسیم آن به اجزاء کوچکتر ،این خصوصیات را از دست خواهد داد ".
اتمها در مقایسه با کلیه چیزهایی که ما در زندگی معمولی خود با آنها برخورد می کنیم ،خیلی خیلی کوچک هستند .قطر یک اتم تقریباً سانتیمتر یا 8 - 10×1 سانتیمتراست . با ذکر یک مثال می توان پی برد که اتمها چقدر کوچک هستند :
برروی کره زمین تقریباً 5 میلیارد نفر زندگی می کنند. اگر هر نفر را یک اتم حساب کنیم و با این اتمها یک زنجیر بسازیم طول این زنجیر به زحمت 50 سانتیمتر خواهد شد .
مولکول چیست؟ اتمها می توانند برای ایجاد ذرات بزرگنر با یکدیگر پیوند پیدا کنند و به اصطلاح "مولکولها " را تشکیل دهند.به عنوان مثال ،دو اتم اکسیژن با یکدیگر تشکیل یک مولکول اکسیژن را می دهند. در طبیعت اغلب اوقات اتفاق می افتد که امهای عناصر مختلف به صورت مولکول با یکدیگر اتحاد می یابند .
یکی از معروفترین این اتحادها مولکول آب است . که ازیک اتم اکسیژن و دو اتم هیدوژن تشکیل شده است . یک مولکول آمونیاک ،یک اتم نیتروژن وسه اتم هیدوژن دارد .
آب و آمونیاک برخلاف اکسیژن و کربن عناصر شیمیایی نیستند بلکه ترکیبات شیمیایی از عناصر متقاوت هستند .کوچکترین ذره چنین ترکیبی مولکول نامیده می شود .چنانچه یک مولکول آب را تجزیه کنیم خصوصیات آب از دست می رود و فقط ذرات تشکیل دهنده آن یعنی هیدروژن و اکسیژن باقی می مانند که خصوصیاتی کاملاً متفاوت با آب دراند .
مولکولهانیز مثل اتمها به طرز غیرقابل تصوری کوچک هستند دریک لیوان ـآب معمولی تقریباً 6000000000000000000000000 یا 24 10×6 مولکول آب وجود دارد . اگر این لوان آب را به میزان مساوی بر روی تمام اقیانوسها و دریاهای کره زمین پخش کنیم درهر لیتر از آب دریاها ،چندین هزار مولکول از آب لیوان وجود خواهد داشت .
ساختار اتم چیست ؟ تقریباً 75سال پیش "ارنست رادر فورد " در انگلستان مطلبی را کشف کرد که فیزیک اتمی جدید را نبیان گذارد . اما اکنون به این مطلب می پردازیم .این فیزیکدان بریتانیایی یک ورق نازک طلایی را مورد اصابت ذرات آلفا قرار داد تا در ون اتمها را شناسایی کند .
اگر مواد در یک چنین ورق فلزی بطور متناسب و یکنواخت پخش بودند ذرات آلفا درهمان مسیر پرواز خود به حرکت ادامه می دادند،اگر چه در این حالت کمی از سرعت ذرات آلفا کاسته می شد. تمام "ذرات آلفا" تقریباً به همین شکل رفتار کردند .البته تعداد کمی نیز کاملاً از مسیر خود منحرف شدند درست مثل اینکه به یک گلوله کوچک اما خیلی سنگین برخورد کرده باشند "رادرفورد " از این آزمایش چنین نتیجه گیری کرد که تقریبا تمام جرم اتم طلا در یک هسته بسیار کوچک وناچیز تمرکز یافته است .
هسته اتم کشف شده بود.امروز ه ما دقیقاً می دانیم ساختار اتم چیست ."اتم مانندیک منظومه شمسی کوچک است ". در مرکز اتم یک هسته بسیار کوچک قرار دارد که از نظر الکتریکی دارای با ر مثبت است و تقریباً تمام جرم اتم را تشکیل می دهد به دور این هسته ذرات کوچک و بسیار سبکی که دارای بار الکتریکی منفی هستند یعنی الکترونها در حرکت هستند.
اتمها ی سنگین تر ین فلزات در وقاع دارای "ساختمانی اسفنجی " هستند و تقریبا فقط از فضای خالی تشکیل شده اند اگر هسته اتم را به برزگی یک گیلاس فرض کنیم ،ساختمان اتم با مدارهای اکترونی خود تقریبا به بزرگی "کلیسای دم " در شهر کلن خواهد بود .
قطر هستهه اتم تقریبا برابر سانتیمتر یا 12- 10سانتیمتر می باشد به عبارت دیگر 100میلیارد هسته اتم درکنار هم زنجیری به طول یک میلیمترخواهند ساخت .
ساده ترین اتم هیدروژن است . دراین اتم فقط یک الکترون به دور هسته بسیار کوچکی می گردد . در شرایط عادی این اکترون فقط پنج میلیارددم سانتیمتر یا 9- 10×5 سانتیمتر از هسته فاصله دارد .اما این الکترون می تواند روی مدارهای دور تری نسیت به هسته نیز قرار گیرد و در اینجاست که متاسفانه و جه تشابه بین اتم و منظومه شمسی از بین می رود .
حرکت الکترون فقط روی مدارهای ویژه و معین یا به عبارت دیگر"تراز انرژی " مشخصی امکان پذیر می بادش در حالی که سیاره ها در هر فاصله دلخواهی از خورشید می توانند حرکت کنند مثلا اگریک الکترون از یک مدار داخلی یا به عبارت دیگراز یکتراز پر انرژی تر به یک مدارداخلی یا یک تراز کم انرژی تر منتقل شود مقدار انرژی به شکل یک ذره یا "کوانت نوری " یا "فوتون" رها می وشد چون فقط مدارها یا ترازهای انرژی کاملاً معینی وجود دارد در نتیجه فقط ذره های نوری یا انرژی کاملاً معینی نیز منتشر خواهند شد و به عبارت دیگردرنمودار موجی طول موجهای کاملا معینی پدیدار می شوند که انسان ار روی آنها می تواند درتمام کیهان یک انم هیدروژن را باز شناسایی کند.
این مطلب برای سایر عناصر شیمیایی نیزصادق است زیر بنای علم "طیف نگاری و طیف شناسی " می باشد که به کمک آن مثلا می توان تشخیص داد چه نوع اتمهایی در آتمسفر خورشید وجود دارند .
مواد متنوعی که روزانه در آزمایش و تجربه با آن روبه رو هستیم، متشکل از اتم‌های گسسته است. وجود چنین ذراتی برای اولین بار توسط فیلسوفان یونانی مانند دموکریتوس (Democritus) ، لئوسیپوس (Leucippus) و اپیکورینز (Epicureanism) ولی بدون ارائه یک راه حل واقعی برای اثبات آن ، پیشنهاد شد. سپس این مفهوم مسکوت ماند تا زمانیکه در قرن 18 راجر بسکوویچ (Rudjer Boscovich) آنرا احیاء نمود و بعد از آن توسط جان دالتون (John Dalton) در شیمی بکار برده شد.
راجر بوسویچ نظریه خود را بر مبنای مکانیک نیوتنی قرارداد و آنرا در سال 1758 تحت عنوان:
Theoria philosophiae naturalis redacta ad unicam legem virium in natura existentium
چاپ نمود.

براساس نظریه بوسویچ ، اتمها نقاط بی‌اسکلتی هستند که بسته به فاصله آنها از یکدیگر ، نیروهای جذب کننده و دفع کننده بر یکدیگر وارد می‌کنند. جان دالتون از نظریه اتمی برای توضیح چگونگی ترکیب گازها در نسبتهای ساده ، استفاده نمود. در اثر تلاش آمندو آواگادرو (Amendo Avogadro) در قرن 19، دانشمندان توانستند تفاوت میان اتم‌ها و مولکول‌ها را درک نمایند. در عصر مدرن ، اتم‌ها ، بصورت تجربی مشاهده شدند.

اندازه اتم
اتم‌ها ، از طرق ساده ، قابل تفکیک نیستند، اما باور امروزه بر این است که اتم از ذرات کوچکتری تشکیل شده است. قطر یک اتم ، معمولا میان 10pm تا 100pm متفاوت است.

ذرات درونی اتم
در آزمایش‌ها مشخص گردید که اتم‌ها نیز خود از ذرات کوچکتری ساخته شده‌اند. در مرکز یک هسته کوچک مرکزی مثبت متشکل از ذرات هسته‌ای ( پروتون‌ها و نوترون‌ها ) و بقیه اتم فقط از پوسته‌های متموج الکترون تشکیل شده است. معمولا اتم‌های با تعداد مساوی الکترون و پروتون ، از نظر الکتریکی خنثی هستند.

طبقه‌بندی اتم‌ها
اتم‌ها عموما برحسب عدد اتمی که متناسب با تعداد پروتون‌های آن اتم می‌باشد، طبقه‌بندی می‌شوند. برای مثال ، اتم های کربن اتم‌هایی هستند که دارای شش پروتون می‌باشند. تمام اتم‌های با عدد اتمی مشابه ، دارای خصوصیات فیزیکی متنوع یکسان بوده و واکنش شیمیایی یکسان از خود نشان می‌دهند. انواع گوناگون اتم‌ها در جدول تناوبی لیست شده‌اند.
اتم‌های دارای عدد اتمی یکسان اما با جرم اتمی متفاوت (بعلت تعداد متفاوت نوترون‌های آنها) ، ایزوتوپ نامیده می‌شوند.

ساده‌ترین اتم
ساده‌ترین اتم ، اتم هیدروژن است که عدد اتمی یک دارد و دارای یک پروتون و یک الکترون می‌باشد. این اتم در بررسی موضوعات علمی ، خصوصا در اوایل شکل‌گیری نظریه کوانتوم ، بسیار مورد علاقه بوده است.

واکنش شیمیایی اتم‌ها
واکنش شیمیایی اتم‌ها بطور عمده‌ای وابسته به اثرات متقابل میان الکترون‌های آن می‌باشد. خصوصا الکترون‌هایی که در خارجی‌ترین لایه اتمی قرار دارند، به نام الکترون‌های ظرفیتی ، بیشترین اثر را در واکنش‌های شیمیایی نشان می‌دهند. الکترون‌های مرکزی (یعنی آنهایی که در لایه خارجی نیستند) نیز موثر می‌باشند، ولی بعلت وجود بار مثبت هسته اتمی ، نقش ثانوی دارند.

پیوند میان اتم‌ها
اتم‌ها تمایل زیادی به تکمیل لایه الکترونی خارجی خود و (یا تخلیه کامل آن) دارند. لایه خارجی هیدروژن و هلیم جای دو الکترون و در همه اتمهای دیگر طرفیت هشت الکترون را دارند. این عمل با استفاده مشترک از الکترونهای اتم‌های مجاور و یا با جدا کردن کامل الکترون‌ها از اتمهای دیگر فراهم می‌شود. هنگامیکه الکترونها در مشارکت اتمها قرار می گیرند، یک پیوند کووالانسی میان دو اتم تشکیل می‌گردد. پیوندهای کووالانسی قویترین نوع پیوندهای اتمی می‌باشند.

یون
هنگامیکه بوسیله اتم ، یک یا چند الکترون از یک اتم دیگر جدا می‌گردد، یون‌ها ایجاد می‌شوند. یون‌ها اتم‌هایی هستند که بعلت عدم تساوی تعداد پروتو ن‌ها و الکترون‌ها ، دارای بار الکتریکی ویژه می‌شوند. یون‌هایی که الکترون‌ها را برمی‌دارند، آنیون (anion) نامیده شده و بار منفی دارند. اتمی که الکترون‌ها را از دست می‌دهد کاتیون (cation) نامیده شده و بار مثبت دارد.

پیوند یونی
کاتیون‌ها و آنیون‌ها بعلت نیروی کولمبیک (coulombic) میان بارهای مثبت و منفی ، یکدیگر را جذب می‌نمایند. این جذب پیوند یونی نامیده می‌شود و از پیوند کووالانسی ضعیفتر است

مرز مابین انواع پیوندها
همانطور که بیان گردید، پیوند کوالانسی در حالتی ایجاد میشود که در آن الکترون‌ها بطور یکسان میان اتمها به اشتراک گذارده می‌شوند، درحالیکه پیوند یونی در حالی ایجاد می‌گردد که الکترون‌ها کاملا در انحصار آنیون قرار می‌گیرند. بجز در موارد محدودی از حالتهای خیلی نادر ، هیچکدام از این توصیف‌ها کاملا دقیق نیست. در بیشتر موارد پیوندهای کووالانسی ، الکترون‌ها بطور نامساوی به اشتراک گذارده میشوند، بطوریکه زمان بیشتری را صرف گردش بدور اتم‌های با بار الکتریکی منفی‌تر می‌کنند که منجر به ایجاد پیوند کووالانسی با بعضی از خواص یونی می‌گردد بطور مشابهی ، در پیوندهای یونی ، الکترون‌ها اغلب در مقاطع کوچکی از زمان بدور اتم با بار الکتریکی مثبت‌تر می‌چرخند که باعث ایجاد بعضی از خواص کووالانسی در پیوند یونی می‌گردد.

نیتروژن

نیتروژن

منبع:ویکی‌پدیا، دانشنامهٔ آزاد

جدول کامل

نام, علامت اختصاری, شماره نیتروژن, N, 7
گروه شیمیاییغیرفلزها
گروه, تناوب, بلوک15 (VA), 2 , p
جرم حجمی, سختی 1.2506 kg/m3(273K), NA
رنگبی‌رنگ

خواص اتمی

وزن اتمی14.0067 واحد جرم اتمی
شعاع اتمی 65 (56)(calc. pm)
شعاع کووالانسی75 pm
شعاع وندروالس 155 pm
ساختار الکترونی 1s2 2s2 2p3
-e بازای هر سطح انرژی2, 5
درجه اکسایش (اکسید) ±3,5,4,2 (strong acid)p ساختار کریستالی شش‌ضلعی

خواص فیزیکی
حالت مادهgas (__)
نقطه ذوب63.14 K (-345.75 ?F)
نقطه جوش77.35 K (-320.17 ?F)
حجم مولی13.54 ×10-3 m3/mol
گرمای تبخیر2.7928 kJ/mol
گرمای همجوشی0.3604 kJ/mol
فشار بخار__ Pa at __ K
سرعت صوت334 m/s at 298.15 K
متفرقهالکترونگاتیویته
3.04 (مقیاس پائولینگ)
ظرفیت گرمایی ویژه1040 J/(kg*K)
رسانائی الکتریکی__ 106/m ohm
رسانائی گرمایی0.02598 W/(m*K)
پتانسیل یونش
1st پتانسیل یونش1402.3 kJ/mol
2nd پتانسیل یونش 2856 kJ/mol
3rd پتانسیل یونش 4578.1 kJ/mol
4th پتانسیل یونش 7475.0 kJ/mol
5th پتانسیل یونش 9444.9 kJ/mol
6th پتانسیل یونش 53266.6 kJ/mol
7th پتانسیل یونش 64360 kJ/mol
پایدارترین ایزوتوپها
ایزو
وفور طبیعی
نیمه عمرDM
DE MeV
DP
13N {syn.}9.965 m e capture 2.220 13C 14N 99.634% N is پایدار with 7 نوترون
15N 0.366% N is stable with 8 neutrons واحدهای SI& STP استفاده شده مگر آنکه ذکر شده باشد.
نیتروژن یا ازت یکی از عناصر شیمیایی در جدول تناوبی است که نماد آن N و عدد اتمی آن 7 است. نیتروژن معمولاً به صورت یک گاز،غیر فلز، دو اتمی بی اثر، بی رنگ، بی مزه و بی بو است که 78% جو زمین را در بر گرفته و عنصر اصلی در بافتهای زنده است. نیتروژن ترکیبات مهمی مانند آمونیاک اسید نیتریک و سیانیدها را شکل می‌دهد.

فهرست مندرجات

[مخفی شود]
• ۱ ویژگیهای درخور نگرش
• ۲ کاربردها
• ۳ پیدایش
• ۴ ترکیبات
• ۵ نقش زیست‌شناختی
• ۶ ایزوتوپها
• ۷ هشدارها
• ۸ مراجعه شود به
• ۹ پیوند به بیرون

[ویرایش] ویژگیهای درخور نگرش
چرخه نیتروژن چرخه نیتروژن چرخه نیتروژن--> چرخه نیتروژن نیتروژن از گروه غیر فلزات بوده و دارای بار الکترون منفی 3.0 می‌‌باشد. نیتروژن پنج الکترون در پوسته خود داشته و در نتیجه در اکثر ترکیبات سه ظرفیتی است. نیتروژن خالص یک گاز بی اثر و بی رنگ است و 78% جو زمین را به خود اختصاص داده است. در 63Kمنجمد شده و در 77K به صورت مایع تبدیل به ماده سرمایشی معروف سرمازا (Cryogen) می‌شود. چرخه نیتروژن
[ویرایش] کاربردها
مهم‌ترین کاربرد اقتصادی نیتروژن برای ساخت آمونیاک از طریق فرایند هابر (Haber) است. آمونیاک معمولاً برای تولید کود و مواد تقویتی و اسید نیتریک استفاده می‌شود. نیتروژن همچنین به‌عنوان پرکننده بی اثر، در مخزنهای بزرگ برای نگهداری مایعات قابل انفجار، در هنگام ساخت قطعات الکترونیک مانند ترانزیستور، دیود و مدار یکپارچه و همچنین برای ساخت فلزات ضد زنگ استفاده می‌شود. نیتروژن همچنین به صورت ماده خنک کننده، برای هم منجمد کردن غذا و هم ترابری آن، نگهداری اجساد و یاخته‌های تناسلی (اسپرم و تخم مرغ)، و در زیست‌شناسی برای نگهداری پایدار از نمونه‌های زیستی کاربرد دارد.
نمک اسید نیتریک شامل ترکیبات مهمی مانند نیترات پتاسیوم و سدیوم و نیترات آمونیوم است. که اولی برای تولید باروت و دومی برای تولید کود به کار می‌رود. ترکیبات نیترات شده مانند نیتروگلیسرین و تری نیترو تولوئن (تی‌ان‌تی) معمولاً منفجر شونده هستند.
اسید نیتریک به عنوان ماده اکسید کننده در مایع سوخت موشک‌ها استفاده می‌شود. هیدرازین و مشتقات آن نیز در سوخت موشک‌ها بکار میروند. نیتروژن اغلب در سرمازاها (Cryogens)، به صورت مایع (معمولاً LN2) استفاده می‌شود. نیتروژن مایع با عمل تقطیر هوا به دست می‌آید. در فشار جو، نیتروژن در دمای -195.8 درجه سانتیگراد (-320.4 درجه فارنهایت) مایع می‌شود.
نیتروژن یا ازت یکی از عناصر شیمیایی در جدول تناوبی است که نماد آن N و عدد اتمی آن 7 است. نیتروژن معمولاً به صورت یک گاز،غیر فلز، دو اتمی بی اثر، بی رنگ، بی مزه و بی بو است که 78% جو زمین را در بر گرفته و عنصر اصلی در بافتهای زنده است. نیتروژن ترکیبات مهمی مانند آمونیاک اسید نیتریک و سیانیدها را شکل می‌دهد.
فهرست مندرجات [مخفی شود] ۱ ویژگیهای درخور نگرش ۲ کاربردها ۳ تاریخچه ۴ پیدایش ۵ ترکیبات ۶ نقش زیست‌شناختی ۷ ایزوتوپها ۸ هشدارها ۹ مراجعه شود به ۱۰ پیوند به بیرون [ویرایش] ویژگیهای درخور نگرش چرخه نیتروژن

چرخه نیتروژن چرخه نیتروژن--> چرخه نیتروژن نیتروژن از گروه غیر فلزات بوده و دارای بار الکترون منفی 3.0 می‌‌باشد. نیتروژن پنج الکترون در پوسته خود داشته و در نتیجه در اکثر ترکیبات سه ظرفیتی است. نیتروژن خالص یک گاز بی اثر و بی رنگ است و 78% جو زمین را به خود اختصاص داده است. در 63Kمنجمد شده و در 77K به صورت مایع تبدیل به ماده سرمایشی معروف سرمازا (Cryogen) می‌شود. چرخه نیتروژن
[ویرایش] کاربردها
مهم‌ترین کاربرد اقتصادی نیتروژن برای ساخت آمونیاک از طریق فرایند هابر (Haber) است. آمونیاک معمولاً برای تولید کود و مواد تقویتی و اسید نیتریک استفاده می‌شود. نیتروژن همچنین به‌عنوان پرکننده بی اثر، در مخزنهای بزرگ برای نگهداری مایعات قابل انفجار، در هنگام ساخت قطعات الکترونیک مانند ترانزیستور، دیود و مدار یکپارچه و همچنین برای ساخت فلزات ضد زنگ استفاده می‌شود. نیتروژن همچنین به صورت ماده خنک کننده، برای هم منجمد کردن غذا و هم ترابری آن، نگهداری اجساد و یاخته‌های تناسلی (اسپرم و تخم مرغ)، و در زیست‌شناسی برای نگهداری پایدار از نمونه‌های زیستی کاربرد دارد.
نمک اسید نیتریک شامل ترکیبات مهمی مانند نیترات پتاسیوم و سدیوم و نیترات آمونیوم است. که اولی برای تولید باروت و دومی برای تولید کود به کار می‌رود. ترکیبات نیترات شده مانند نیتروگلیسرین و تری نیترو تولوئن (تی‌ان‌تی) معمولاً منفجر شونده هستند.
اسید نیتریک به عنوان ماده اکسید کننده در مایع سوخت موشک‌ها استفاده می‌شود. هیدرازین و مشتقات آن نیز در سوخت موشک‌ها بکار میروند. نیتروژن اغلب در سرمازاها (Cryogens)، به صورت مایع (معمولاً LN2) استفاده می‌شود. نیتروژن مایع با عمل تقطیر هوا به دست می‌آید. در فشار جو، نیتروژن در دمای -195.8 درجه سانتیگراد (-320.4 درجه فارنهایت) مایع می‌شود.
[ویرایش] تاریخچه
نیتروژن (که لاتین آن nitrum و یونانی آن Nitron به معنی "جوش شیرین محلی"، "شکل دادن" و "ژن یا عامل" است) توسط شخصی به نام Daniel Rutherford که آن را هوای کشنده نامید، در سال 1772 کشف شد. در پایانه‌های سده 18 شیمیدانان بخشی از هوا را یافتند، که عمل فروزش (احتراق) را همراهی نمیکرد. در همان زمان Carl Wilhelm Scheele، Henry Cavendish و Joseph Priestley به بررسی بیشتر نیتروژن پرداختند. ایشان نیتروژن را هوای سوخته نام گذارده بودند. گاز نیتروژن به قدری بی اثر بود که آنتوان لاوازیه آن را ازت که به معنی بدون زندگی است، نام نهاد.
ترکیبات نیتروژن در سده‌های میانه شناخته شده بود. کیمیاگران اسید نیتریک را به عنوان بازدم آب میشناختند. ترکیب نیتریک و اسید هیدروکلریک که با نام تیزاب سلطانی شناخته شده بود، برای آب کردن زر مشهور بود.[ویرایش] پیدایش نیتروژن بیشترین عنصر جو کره زمین از نظر حجم است. (78.1 % حجمی) و برای اهداف صنعتی با عمل تقطیر هوای مایع بدست می‌آید. ترکیباتی که حاوی این عنصر هستند در فضای بیرونی نیز مشاهده شده اند. نیتروژن -14 در اثر عمل همجوشی هسته‌ای در ستارگان، تولید می‌گردد. نیتروژن از ترکیبات عمده ضایعات حیوانی(مانند چلغوز یا کود) بوده و معمولاً به صورت اوره، اسید اوریک و ترکیباتی از محصولات نیتروژنی یافت می‌شود.
[ویرایش] ترکیبات اصلی‌ترین هیدرید نیتروژن، آمونیاک است (NH3)، البته هیدرازین (N2H4) نیز مشهور است. ترکیب آمونیاک ساده تر از آب بوده و در محلول یونهای آمونیاک (NH4+) را تشکیل می‌دهد. آمونیاک مایع در حقیقت کمی آمفیروتیک بوده و آمونیاک و یونهای آمینه (NH2-) را بوجود می‌‌آورد؛ که البته هر دو نمک آمیدها و نیترید شناخته شده اند، ولی در آب تجزیه می‌شوند. ترکیبات جانشین آمونیاک به تنهایی یا باهم، آمینها نامیده می‌شوند. زنجیره ها، حلقه‌ها و ساختارهای بزرگ‌تر هیدریدهای نیتروژنی نیز شناخته شده اند، ولی در واقع ناپایدار هستند.
گروههای دیگر آنیونهای نیتروژن، آزیدین‌ها (N3-) هستند، که خطی بوده و نسبت به دی اکسید کربن ایزو الکتریک هستند. مولوکول دیگر با ساختار مشابه، مونوکسید دی نیتروژن N2O یا گاز خنده است، و یکی از اکسیدهای گوناگون بوده و برجسته تر از مونوکسید نیتروژن (NO) و دی اکسید نیتروژن (NO2) است، که هر دوی آنها الکترون غیر زوج دارند. که دومی تمایلی را به دوپارشدن نشان داده و از اجزای تشکیل دهنده هوای آلوده است.
اکسیدهای استاندارد بیشتری مانند تری اکسید دی نیتروژن (N2O3) و پنتاکسید دی نیتروژن (N2O5) معمولاً تا حدی نا پایدار و قابل انفجار هستند. اسیدهای متناظر آنها نیتروس (HNO2) و اسید نیتریک (HNO3) بوده با نمکهای متناظر که نیتریتها و نیتراتها نامیده می‌شوند. اسید نیتریک یکی از چند اسیدی است که از هیدرونیوم قوی تر است.
[ویرایش] نقش زیست‌شناختی نیتروژن عنصر اصلی اسیدهای آمینه و اسیدهای هسته‌ای که نیتروژن را ماده‌ای حیاتی برای ادامه زندگی می‌کنند، است. لوبیا مانند اکثر گیاهانی که دانه‌های سبوسی دارند می‌تواند عمل بازیافت نیتروژن را به طور مستقیم از هوا انجام دهد، چراکه ریشه‌های آنها دارای برآمدگی هایی، برای نگهداری میکروبهایی است که عمل تبدیل به آمونیاک را فرایندی به نام تثبیت نیتروژن انجام می‌دهد، می‌‌باشد. این گیاهان آمونیاک را به اکسیدهای نیتروژن و آمینو اسید تبدیل کرده و پروتئین میسازند.
[ویرایش] ایزوتوپها نیتروژن دو ایزوتوپ پایدار دارد: (N-14 , N-15). که مهم‌ترین آن دو N-14 (99.634%) است که در چرخه CNO در ستارگان تولید می‌شود. مابقی، ایزوتوپ N-15 است. یکی از ده ایزوتوپی که به صورت مصنوعی تولید می‌شوند دارای نیمه عمر نه دقیقه‌ای داشته و ایزوتوپهای دیگر نیمه عمر چند ثانیه یا کمتر دارند.
واکنشهای زیست‌شناختی-واسطهای (مانند همانند سازی، جذب و ترکیب نیترات سازی) و ... پویایی نیتروژن در خاک را به شدت کنترل می‌کنند. این ترکیبات معمولاً باعث عمل غنی سازی N-15 لایه زیرین و تخلیه محصول می‌شود. البته این فرایند سریع اغلب مقادیری از آمونیام و نیترات نیز در بر دارد، زیرا آمونیوم بصورت ترجیحی به‌وسیله سایبان جو نیترات، نکهداری می‌شود. خاک نیتراتی نسبت به خاک آمونیومی، توسط ریشه درختان بهتر جذب و ترکیب می‌شود.
[ویرایش] هشدارها
کودهای نیتراتی شسته شده منبع اصلی آلودگی رودها و آبهای زیر زمینی است. سیانو (-CN) حاوی ترکیباتی است که بی نهایت سمی بوده و برای حیوانات و همه پستانداران کشنده است. [ویرایش] مراجعه شود به چرخه نیتراتیNOx
[ویرایش] پیوند به بیرون WebElements.com - Nitrogen EnvironmentalChemistry.com - Nitrogen It's Elemental - Nitrogen Schenectady County Community College - Nitrogen
فهرست عناصر شیمیایی اربیوم| ارسنیک| آرگون| استاتین| استرنسیوم| اسکاندیوم| اسمیوم| آکتینیوم| اکسیژن| آلومینیوم| امریسیوم| انتیموان| آهن| اورانیوم| ایتربیوم| ایتریوم| ایریدیوم| ایندیوم| اینشتینیوم| باریوم| برکلیوم| برم| بریلیوم| بور| بوهریوم| بیسموت| پالادیوم| پتاسیم| پراسیودیمیوم| پروتاکتینیوم| پرومتیوم| پلاتین| پلوتونیوم| پولونیوم| تالیوم| تانتالیوم| تربیوم| تکنسیوم| تلوریوم| تنگستن| توریوم| تولیوم| تیتانیوم| جیوه| دارمشتادیوم| دوبنیوم| دیسپروزیوم| رادرفوردیوم| رادون| رادیوم| رنیوم| روبیدیوم| روتنیوم| رودیوم| روی| زیرکونیوم| ژرمانیوم| ساماریوم| سدیم| سرب| سریوم| سزیوم| سلنیوم| سیبورگیوم| سیلیسیوم| طلا| فرانسیوم| فرمیوم| فسفر| فلوئور| قلع| کادمیوم| کالیفرنیوم| کبالت| کربن| کروم| کریپتون| کلر| کلسیم| کوریوم| گادولینیوم| گالیوم| گزنون| گوگرد| لانتانیوم| لاورنسیوم| لوتسیوم| لیتیوم| مس| مندلویوم| منگنز| منیزیوم| مولیبدن| میتنریوم| نئون| نپتونیوم| نقره| نوبلیوم| نیتروژن| نیکل| نیوبیوم| نیودیمیوم| وانادیوم| هاسیوم| هافنیوم| هلیوم| هولمیوم| هیدروژن| ید| یوروپیومبرگرفته از «http://fa.wikipedia.org/wiki/%D9%86%DB%8C%D8%AA%D8%B1%D9%88%DA%98%D9%86» رده‌های صفحه: جدول تناوبی عناصر | عناصر طبیعت | شیمی
[ویرایش] پیدایش
نیتروژن بیشترین عنصر جو کره زمین از نظر حجم است. (78.1 % حجمی) و برای اهداف صنعتی با عمل تقطیر هوای مایع بدست می‌آید. ترکیباتی که حاوی این عنصر هستند در فضای بیرونی نیز مشاهده شده اند. نیتروژن -14 در اثر عمل همجوشی هسته‌ای در ستارگان، تولید می‌گردد. نیتروژن از ترکیبات عمده ضایعات حیوانی(مانند چلغوز یا کود) بوده و معمولاً به صورت اوره، اسید اوریک و ترکیباتی از محصولات نیتروژنی یافت می‌شود.
[ویرایش] ترکیبات
اصلی‌ترین هیدرید نیتروژن، آمونیاک است (NH3)، البته هیدرازین (N2H4) نیز مشهور است. ترکیب آمونیاک ساده تر از آب بوده و در محلول یونهای آمونیاک (NH4+) را تشکیل می‌دهد. آمونیاک مایع در حقیقت کمی آمفیروتیک بوده و آمونیاک و یونهای آمینه (NH2-) را بوجود می‌‌آورد؛ که البته هر دو نمک آمیدها و نیترید شناخته شده اند، ولی در آب تجزیه می‌شوند. ترکیبات جانشین آمونیاک به تنهایی یا باهم، آمینها نامیده می‌شوند. زنجیره ها، حلقه‌ها و ساختارهای بزرگ‌تر هیدریدهای نیتروژنی نیز شناخته شده اند، ولی در واقع ناپایدار هستند.
گروههای دیگر آنیونهای نیتروژن، آزیدین‌ها (N3-) هستند، که خطی بوده و نسبت به دی اکسید کربن ایزو الکتریک هستند. مولوکول دیگر با ساختار مشابه، مونوکسید دی نیتروژن N2O یا گاز خنده است، و یکی از اکسیدهای گوناگون بوده و برجسته تر از مونوکسید نیتروژن (NO) و دی اکسید نیتروژن (NO2) است، که هر دوی آنها الکترون غیر زوج دارند. که دومی تمایلی را به دوپارشدن نشان داده و از اجزای تشکیل دهنده هوای آلوده است.
اکسیدهای استاندارد بیشتری مانند تری اکسید دی نیتروژن (N2O3) و پنتاکسید دی نیتروژن (N2O5) معمولاً تا حدی نا پایدار و قابل انفجار هستند. اسیدهای متناظر آنها نیتروس (HNO2) و اسید نیتریک (HNO3) بوده با نمکهای متناظر که نیتریتها و نیتراتها نامیده می‌شوند. اسید نیتریک یکی از چند اسیدی است که از هیدرونیوم قوی تر است.
[ویرایش] نقش زیست‌شناختی
نیتروژن عنصر اصلی اسیدهای آمینه و اسیدهای هسته‌ای که نیتروژن را ماده‌ای حیاتی برای ادامه زندگی می‌کنند، است. لوبیا مانند اکثر گیاهانی که دانه‌های سبوسی دارند می‌تواند عمل بازیافت نیتروژن را به طور مستقیم از هوا انجام دهد، چراکه ریشه‌های آنها دارای برآمدگی هایی، برای نگهداری میکروبهایی است که عمل تبدیل به آمونیاک را فرایندی به نام تثبیت نیتروژن انجام می‌دهد، می‌‌باشد. این گیاهان آمونیاک را به اکسیدهای نیتروژن و آمینو اسید تبدیل کرده و پروتئین میسازند. colby was here
[ویرایش] ایزوتوپها
نیتروژن دو ایزوتوپ پایدار دارد: (N-14 , N-15). که مهم‌ترین آن دو N-14 (99.634%) است که در چرخه CNO در ستارگان تولید می‌شود. مابقی، ایزوتوپ N-15 است. یکی از ده ایزوتوپی که به صورت مصنوعی تولید می‌شوند دارای نیمه عمر نه دقیقه‌ای داشته و ایزوتوپهای دیگر نیمه عمر چند ثانیه یا کمتر دارند.
واکنشهای زیست‌شناختی-واسطهای (مانند همانند سازی، جذب و ترکیب نیترات سازی) و ... پویایی نیتروژن در خاک را به شدت کنترل می‌کنند. این ترکیبات معمولاً باعث عمل غنی سازی N-15 لایه زیرین و تخلیه محصول می‌شود. البته این فرایند سریع اغلب مقادیری از آمونیام و نیترات نیز در بر دارد، زیرا آمونیوم بصورت ترجیحی به‌وسیله سایبان جو نیترات، نکهداری می‌شود. خاک نیتراتی نسبت به خاک آمونیومی، توسط ریشه درختان بهتر جذب و ترکیب می‌شود.
[ویرایش] هشدارها
کودهای نیتراتی شسته شده منبع اصلی آلودگی رودها و آبهای زیر زمینی است. سیانو (-CN) حاوی ترکیباتی است که بی نهایت سمی بوده و برای حیوانات و همه پستانداران کشنده است.
[ویرایش] مراجعه شود به
چرخه نیتراتی
• NOx

گروه‌های جدول تناوبی

گروه‌های جدول تناوبی

منبع:ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری, جستجو
پیشنهاد شده است که این مقاله یا بخش با جدول تناوبی ادغام گردد. (بحث).
یک گروه جدول تناوبی ستون عمودی در جدول تناوبی است که شامل چندین عنصر می‌شود. در جدول تناوبی استاندارد هجده گروه وجود دارد.
در گذشته گروه‌های جدول را بر اساس تشابه خواص عناصر آن گروه به یکدیگر ساختند، در حالی که در شیمی جدید نظم گروه‌ها را بر اساس آرایش آخرین لایه الکترون اتم عناصر آن گروه می‌دانند.
[ویرایش] شماره گروه‌ها
برای شماره‌بندی گروه‌ها سه راه وجود دارد: راه اول استفاده از اعداد هندی-عربی است و و دو راه دیگر استفاده از اعداد رومی. در گذشته هم برای نامگذاری گروه‌ها از اعداد رومی استفاده می‌شده‌است، اما استفاده از اعداد عربی توسط آیوپاک برای از بین بردن اشتباهات پیشنهاد شده‌است.
برای نامگذاری گروه‌ها از ترکیب اعداد رومی با حروف انگلیسی A و B استفاده می‌شود به طوری که در سیستم قدیمی آیوپاک از حرف A برای ذکر عناصر سمت چپ جدول و از حرف B برای ذکر عناصر سمت راست جدول استفاده می‌شود در حال که در سیستم CAS از حرف A برای ذکر عناصر گروه‌های اصلی و از حرف B برای ذکر عناصر واسطه استفاده می‌شود. این نوع نامگذاری بیشتر در اروپا استفاده می‌شود، در حالی که سیستم جدید آیوپاک سعی در برطرف کردن اشتباهات دارد.
گروه‌های جدول تناوبی عبارتند از (در پرانتز به ترتیب نام‌های سیستم قدیمی در اروپا و امریکا نوشته شده‌است):
• گروه ۱ (IA,IA): فلزات قلیایی
• گروه ۲ (IIA,IIA): فلزات قلیایی خاکی
• گروه ۳ (IIIA,IIIB)
• گروه ۴ (IVA,IVB)
• گروه ۵ (VA,VB)
• گروه ۶ (VIA,VIB)
• گروه ۷ (VIIA,VIIB)
• گروه ۸ (VIII)
• گروه ۹ (VIII)
• گروه ۱۰ (VIII)
• گروه ۱۱ (IB,IB): فلزات مسکوک (این نام توسط آیوپاک پیشنهاد نشده‌است)
• گروه ۱۲ (IIB,IIB)
• گروه ۱۳ (IIIB,IIIA): گروه بور
• گروه ۱۴ (IVB,IVA): گروه کربن
• گروه ۱۵ (VB,VA): گروه نیتروژن
• گروه ۱۶ (VIB,VIA): گروه کاکوژن‌ها
• گروه ۱۷ (VIIB,VIIA): گروه هالوژن‌ها
• گروه ۱۸ (گروه 0): گازهای نجیب

جدول تناوبی
فهرست عناصر:نام | نماد اتمی | عدد اتمی | نقطه جوش | نقطه ذوب | چگالی | جرم اتمی | ساختار بلورین

گروه‌ها: 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18

دوره‌ها: 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9

گروه‌های شیمیایی: قلیایی - قلیایی خاکی - لانتانیدها - آکتنیدها - عناصر واسطه - فلزات ضعیف - شبه‌فلزات - غیرفلزات - هالوژن‌ها - گازهای نجیب